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Voorwoord

In de Bommelverhalen van Marten Toonder komen twee wetenschappers voor: de geweten-
loze en machtswellustige professor Joachim Sickbock en de van oorsprong Duitse stads-
geleerde professor Zbygniew Priwytzkofski. Om hun karakters te illustreren zal ik enkele
stukjes citeren uit het verhaal “De zonnige kijk”, waarin professor Sickbock een mislukte
poging doet om een kunstmatig intelligente levensvorm te ontwikkelen:

‘Alles is gereed, sprak hij tot zichzelf. ‘Daar ligt het chemisch element uit de vierde groep van het
periodiek systeem te wachten op de hyper-ontlading, die het zal omvormen tot de monade, die mij
voor de geest zweeft...’

‘Het is ergerlijk, dat men mij maar laat tobben zonder subsidie, terwijl ik de aarde zou kunnen
bevolken met een voorgevormde levensvorm.’

‘Glas,” mompelde hij vol afschuw. ‘Mijn proef is mislukt! In plaats van een brein heb ik glas
gemaakt. En mijn transmutator is vernietigd, zodat ik het niet kan overdoen. Ei, hoe armzalig is
het leven van een miskend geleerde..’

De arme professor Sickbock moet voor de financiering van zijn onderzoek keer op keer een
beroep doen op de derde geldstroom (Olivier Bommel) en gaat daarbij zelfs zover dat hij
zijn onderzoek ombuigt naar een voor hem totaal oninteressante richting, in dit geval het
maken van goud. Dit dient alleen om in de uren die overschieten zich te kunnen richten op
zijn werkelijke onderzoek. Dit is tegenwoordig ook in het werkelijke leven het lot van vele
wetenschappers.

Overigens doet dit citaat mij denken aan de verarming van de huidige wetenschappelijke taal,
met name in theoretische hoge-energie fysica. Binnen deze tak van wetenschap wordt het
weinig toevoegende prefixyper, dat in het citaat hierboven voorkomt, veelvuldig gebezigd.
Maar wat erger is, men kan in dezelfde zin het prsfipertegenkomen wat notabene het-
zelfde betekent. Zo ontstaan uitdrukkingen als ‘het hypermultiplet van een supersymmetrische
quantumveldentheorie’. Het gebruik van deze twee prefixen had mijns inziens vermeden
moeten worden, maar ik vrees dat het kwaad al is geschied.

In contrast met Sickbock is daar de Rommeldamse stadsgeleerde Prlwytzkofski, die in het-
zelfde verhaal ook voor het voetlicht treedt:

Professor Prlwytzkofski zat in het laboratorium de krant te lezen om zich te ontspannen na de
doorwerkte nacht. Maar veel vermaak putte hij er niet uit. ‘Praw,” mompelde hij. ‘Door nieuwer
gouddekking meer geld vervoegbaar. Afkoeling van financieel klimaat. Welk ener kinderij. Alsof
geld wichtiger is, dan duchtiger wetenschappelijker arbeid!’

Merk vooral de keuze op van het lidwoordde doorwerkte nachsuggererend dat dit meer

dan eens per week voorkomt. Het is duidelijk dat Prlwytzkofski een vaste betrekking heeft en

zich dus de luxe kan permitteren om zich toe te leggen op zuiver wetenschappelijk onderzoek.
Zonder enige andere motivatie dan zijn eigen nieuwsgierigheid kan hij onpartijdig onderzoek

doen en dat is natuurlijk hoe het zou moeten zijn voor iedere wetenschapper.



Ikzelf voel mij meer verwant met Priwytzkofski dan met Sickbock, en in dat licht vind ik het
prettig dat ik mezelf gedurende de afgelopen vijf jaar AlO (en geen OlO) heb mogen noemen.
We leven nu echter in een tijdsgewricht waarin de Sickbocks oprukken, het geld het wint van
de nieuwsgierigheid en dientengevolge het zuivere onderzoek met uitsterven wordt bedreigd.
Ei, ei.

De afgelopen vijf jaar die ik aan mijn promotie heb besteed zijn in meerdere opzichten avon-
tuurlijk geweest. Het is allemaal begonnen toen mijn vriend en wiskundestudent Rob me
voorstelde aan prof. Ruud Martini, die juist op dat moment op zoek was naar een fysicus met
de juiste kennis. Ik kan me nog herinneren dat de ongedwongen sfeer binnen de groep voor
mij een van de grootste aantrekkingspunten vormde om in Enschede te beginnen. Professor
Martini bleek gelukkig ook van het Prlwytzkofski-soort en met name door zijn liefde voor
het vak en zijn goede begeleiding is hij voor mij een groot voorbeeld geweest.

Tevens gaat mijn dank uit naar Paul Kersten, die de begeleiding van Ruud overnam toen hij
ziek was. Hij heeft zich meer dan gewetensvol van die taak gekweten en ik weet zeker dat
dit proefschrift er niet zou hebben gelegen zonder zijn hulp en vriendschap. Dankzij hem
heb ik ook contacten kunnen leggen met het ITEP in Moskou en ik bedank met name Andrei
Marshakov, Alexei Morozov, Andrei Mironov en Joseph Krasil’shchik voor de plezierige en
nuttige maand die ik in Moskou heb besteed.

Al mijn collega’s hebben gezorgd voor een prettige werksfeer, maar een aantal van hen wil
ik toch met name noemen. Ik bedank Gerard en Gerhard voor de prettige sfeer en de gezel-
lige spelletjesavonden en Jeroen, Jan-Kees, Johann, Eugene, Gerhard en Gerard voor hun
pogingen mij te leren bridgen in de lunchuurtjes. Diana stond altijd klaar voor seétetari
ondersteuning en een gezellige babbel. Sergei en Johan hebben lijdzaam mijn aanwezigheid
als kamergenoot ondergaan, hulde daarvoor.

Ik kan me nog herinneren dat Rob en ik al in de eerste maanden van mijn verblijf in Twente
uitrekenden wie er eerder klaar zou zijn: ik met mijn promotie of hij met zijn studie. Aangezien
hij al twee jaar bezig was, waren we het snel met elkaar eens. Gedurende de jaren hebben we
die prognose echter wat moeten aanpassen links en rechts... En nu dan ligt hier mijn proef-
schrift, na vijf jaar van hervonden vriendschap. Maar ik verheug me nu al op jouw afstuderen
en op de vele jaren vriendschap die we hopelijk zullen blijven delen.

Ik bedank ook al mijn vrienden en mijn ouders en zussen, die zich al die tijd hebben afgevraagd
waar ik in 's hemelsnaam mee bezig was. Nou, jullie kunnen het nu lezen en je vergapen aan
al die ingewikkelde wiskunde. Maar belangrijker voor me is dat jullie mij begrijpen als mens
en me altijd hebben gesteund in wat ik doe.

Tot slot is daar Linda, mijn wonder op wielen, voor wie woorden slechts tekort kunnen
schieten. Dankjewel voor alles.



Introduction

Partial differential equations (PDE’s) come in various sorts, classified for example according
to the order, the number of variables, whether the equations are linear or nonlinear, and
whether they are overdetermined, underdetermined or well-determined. A general theory
to find explicit solutions of PDE’s does not exist for any substantial class of equations, but
results can be obtained for restricted classes. A general result about existence of solutions
of PDE’s is the Cauchy-Kovalevskaya theorem, which in principal opens the possibility to
construct solutions of an initial value problem for the class of well-determined PDE'’s, in
terms of power series. This theorem can be applied regardless of the order, the number
of variables or the (non)linearity. This theorem covers many important PDE’s arising from
physics, for example evolution equations (the heat equation, the KdV equation), the Laplace
equation, Maxwell's equations and the Navier-Stokes equations.

In this thesis we consider a system of equations called the Witten-Dijkgraaf-Verlinde-Verlinde
or WDVV system. In the year 1991 it appeared in physics, more particularly in the stud-
ies of two-dimensional conformal field theory, where it was discovered by Witten [62] and
Dijkgraaf, E. Verlinde and H. Verlinde [16]. Roughly speaking, this system expresses the
condition for the third order derivatives of a function to be the structure constants of an as-
sociative, commutative algebra with a unit. The WDVV system defies a treatment with the
Cauchy-Kovalevskaya theorem: it is a system of highly overdeterrhitiédi order nonlin-

ear equations which can be defined for an arbitrary number of variables greater than or equal
to three. In fact, because of the overdeterminedness one might expect that no solutions exist
at all. One indication that the WDVV system is very special, is that it does indeed admit
exact solutions for any number of variables. For example, in one of the articles in which the
WDVV system made its first appearance [16], the authors gave a class of solutions for any
number of variables. These solutions are polynomial and were given for the finite dimen-
sional root systems ol DE type. Denoting the root space by and the Coxeter group by

W, the variables then correspond to coordinates on the space of Coxetendfibits

Within the mathematical community, the first to study the WDVV equations intensively was
Boris Dubrovin. Among other things, he has shown that the polynomial solutions can be
defined for any finite Coxeter group and he related them with the unfoldings of isolated sin-
gularities [19]. Moreover, he has shown that the WDVV equations admit a representation
in terms of a socalled zero-curvature form with a spectral parameter, see for example the
survey article [18]. This is an indication that the system is within a special class of PDE’s:
the class of integrable systems. There is a lot of confusion in the literature about the concept
of integrability, involving zero-curvature representations, conservation laws, symmetries, bi-
hamiltonian structures, the Pain&etest and so on. This topic will not be discussed in any
detail here. Among PDE's, integrable systems are an exception in the sense that methods
exist to discuss explicit solutions. This then gives another reason to consider the WDVV
equations as something special.

A third reason to study the WDVV equations is that in the other article in which the equations
made their first appearance [62] it was conjectured that a certain function, appearing in the

1 The only exception is the WDVV equation for three variables, which is well-determined. In this
case Cauchy-Kovalevskaya can indeed be applied [18].



theory of intersection numbers on the moduli spaces of curves, is a tau function of the KdV
hierarchy. This was later proven to be true by Kontsevich [36]. This function has a power
series expansion, with the zero order term satisfying the WDVV equations. It was later
shown that this zero order term itself is a tau function of the dispersionless KdV hierarchy.
This establishes a link between the WDVV equations and a well-known integrable hierarchy.

In the years after 1991, the role of the WDVV equations in mathematics became important
in enumerative geometry, within the context of quantum cohomology and Gromov-Witten
invariants, which are topological invariants of symplectic manifolds. In particular, the article
[62] considers the quantum cohomology of a single point. As another example, we mention
that it was shown [37] that the problem of finding the number of rational curves of dégree
passsing througBk — 1 generic points in the complex projective plaRé is solved in terms

of a generating functiod” depending or8 variables. This generating function satisfies the
WDVV equations.

In this thesis we will not go into the solutions of the WDVV equations coming from singular-

ity theory, nor solutions coming from quantum cohomology and Gromov-Witten invariants.
The main motivation for this choice is that in 1996, a generalized version of the WDVV
equations was introduced by Marshakov, Mironov and Morozov [45] and it is this general-
ized WDVV system that constitutes the main topic of this thesis. The physical context in
which these equations were found is call§d= 2 supersymmetric Yang-Mills theory, also
called Seiberg-Witten theory [59]. The generalized system is truely a generalization of the
original system, in the sense that solutions to the original equations are automatically solu-
tions to their generalized counterparts but the converse statement is false. The generalized
WDVV equations still retain many of the properties that make the study of the original equa-
tions worthwhile. For example we consider in this thesis constructions of explicit functions
for any number of variables, which are solutions of the generalized equations but not of the
original ones. Moreover, these solutions were shown to be tau functions for the Whitham
hierarchy corresponding to the periodic Toda chain, thus establishing a link between general-
ized WDVV equations and known integrable hierarchies. Finally, the generalized equations
themselves are indicated to be integrable since for example they have a zero-curvature rep-
resentation (albeit without a spectral parameter) and they allow the construction of explicit
solutions.

The introduction of the original and generalized WDVV equations together with some of their
background in physics as well as mathematics is the topic of the first chapter. The second
paragraph of this chapter contains a discussion of a continuous group of contact symmetries
which will be used in chapter three. These are symmetries of the generalized, but not of
the original equations and they have a clear physical meaning as electro-magnetic duality
transformations.

We then come to the main topic of this thesis, which is to discuss explicit constructions of
solutions of the generalized WDVV system coming from four and five-dimensional physics.
Typically these solutions, called prepotentials, can be expressed as an infinite power series
in an auxiliary parameter and the zero order term separately satisfies the equations. Such
zero order terms are called perturbative prepotentials. The construction of the perturbative
prepotentials is as follows: one starts with a base funcfi@r), which depends on only one
variable. Then for every rankK root systemR with root spacd/ one considers the function

Flai,...,an) = Z (e, a))

aER



Here the sum is over all roots, the element = >, a;a; € V is expressed on a basis
of simple roots and.,.) is the standard Euclidean inner product ¥n Taking the four-
dimensional base functiofy(z) = 322 log(z) we prove thatF satisfies the generalized (but
not the original) WDVV system for any root systef The five-dimensional case is more
problematic. Taking its base function

x _2kx

k=1
we show that the corresponding perturbative prepotential does not satisfy the WDVV system.
Due to a result in string theory, we are led to consider adding a cubic polynomial to the five-
dimensional perturbative prepotential. Keeping some free parameters in the cubic polynomial
leads only to partial succes, since solutions can now be found for certain combinations of the
parameters, but the relation between the solutions and the Coxeter groups we started from is
lost. This is because a generic Coxeter group does not contain a cubic invariant polynomial.
A careful study of the proof of the four-dimensional case leads us to add a cubic polynomial
involving a new variable in such a way that the new prepotential is

Flagy...,an) = Z f5((a,a)) —i—’y{%a% + %ao(a,a)}

a€ER

This prepotential is Coxeter invariant and contains only one parameféfe show that for

each crystallographical root system it is possible to find one value @ich that the cor-
responding prepotential satisfies the generalized WDVV system. Moreover, somewhat sur-
prisingly it even satisfies the original WDVV equations. To the best of our knowledge these
solutions to the original WDVV equations are new, and their construction is quite nontrivial
since the addition of a polynomial involving a new variable is usually expected to spoil the
WDVYV equations. This discussion of the four and five-dimensional perturbative prepotentials
is the subject of chapter two.

Chapter three deals with the construction of the full (as opposed to the perturbative) prepo-
tentials, which is much more complicated. In this thesis we restrict ourselves to the four-
dimensional case. The starting point is the Seiberg-Witten data, consisting of three ingre-
dients. The first ingredient is a particular family of Riemann surfaces associated with any
simple Lie algebrg. The moduliu; of the family are given by Weyl invariant polynomials

on the Cartan subalgebra @f The second ingredient is a special meromorphic differential
Asw, such that its first order derivatives with respect to the moduli are holomorphic forms
on the Riemann surface. The third ingredient is a special sefVobut of the possibleg

cycles on the Riemann surface, wherdenotes its genus. These special cycles are denotes
by Ay, ..., AN, By, ..., By and satisfy the usual intersection relations.

The next step is to make a change of variables from the magltii the new variables

a; 27{ Asw
A,

i

which are period integrals ofsy over the subset of special cycles of tyge The period
integrals over the other special cyclgs= fBi Asw can be differentiated with respect to the
a; giving

H,, = =
Y day B, Oaj




The matrixII;; can be shown to be a submatrix of the period matrix of the Riemann surface,
hence it is symmetric. As a result the objelstgan be integrated locally to a single function
F(a1,...,an) which is called the prepotential.

We then go on to construct an associative, commutativgebra with unit out of the first
order derivativesy; = 6gSW with structure constanl@’C Recall that in order to show that
the prepotentialF satisfies the WDVV equations, it |s necessary prove that its third order
derivatives give an associative, commutative algebra with unit. Identifying this algebra with
the algebra of forms leads to a relation between the third order derivativésafd the
structure constanl@fj. In this thesis, we consider two methods of proving this relation but
here we will sketch only one.

The WDVV equations are equivalent to the following relation between structure constants
and third order derivatives; ;.

N
Fijke = E CliarFrim

l,m=1

where then; are a set of (possibly-dependent) parameters. Since the first order derivatives
of F can be given in terms of period integrals)afy,, these equations become a set of second
order linear equations which have to be satisfied\py; .

Basically, proving the relation between structure constants and third order derivatives is now
reduced to finding solutions to a second order system of PDE'’s known as a Picard-Fuchs
system. Such a reduction, from a third order to a second order system, can also be done in
a trivial way: since the WDVV equations for a functidhare homogeneous of order three,

one can also rewrite them as a system of second order equations on the first order derivatives
of F. In that case solving the equations means solving the second order system in terms of
N solutionsF; together with the condition that th& integrate to a single functioR'. The

main advantages of the construction of solutions described above is that we consider a second
order linear system (the Picard-Fuchs system), which can be rewritten in terms of a higher
order ODE with regular singular points. The standard theory of ODE’s can then be used
to show that there exist precisely independent solutions; = fB ASW. Moreover, the
possibility of integrating these solutions to a single function is guaranteed This then proves
that the prepotentials satisfy the WDVV equations, which is the main result of chapter three.

Another topic in chapter three is the relation between the Seiberg-Witten prepotentials and an
integrable system called the periodic Toda chain. This is a dynamical systdhpafticles

on a chain with interactions that can be defined for any sirdimple Lie algebrg. For such
systems, the classical notion of integrability involves the existence of precisebnserved
quantities in involution, so that one can make a change of coordinates to action-angle vari-
ables in terms of which the flow of the system linearizes on the Liouville torus. For the Toda
system, the conserved quantities can be obtained from a Lax representation. Given a Lax
representation with spectral parametethe spectrum of the Lax operatdy(z) is invariant

under the flow of the system. This spectrum is given by the characteristic polynomial

det[A(z) —x-1]=0

This gives a family of Riemann surfaces, depending on the coordinates and momenta of the

particles, which is also invariant under the flow. It so happens that this family of Riemann
2 One takes the tensor product of holomorphic forms instead of the more common wedge product,

which makes the algebra commutative.

8



surfaces is the same as the one occurring in Seiberg-Witten theory. Moreover, the Seiberg-
Witten differential\ sy, turns out to be the action differentiadq of the Toda chain. It can be
shown that the flow of the system linearizes on the Jacobian of the Riemann surfaces. Consid-
eration of dimensions suggests that the Jacobian contains a subvariety which can be identified
with the Liouville torus. Indeed the Seiberg-Witten differential together with the special cy-
cles select @ N-dimensional subvariety which plays this role and is called the distinguished
Prym variety. Moreover, the prepotential itself can be identified with a tau function of the
socalled Whitham hierarchy associated with the periodic chain. These relations between the
Seiberg-Witten prepotentials and the periodic Toda chain will be discussed in some detail in
chapter three.

Finally, in the case of Lie algebrdy we show how the prepotential can be expressed as
an infinite power series in an auxiliary parameter and the zero order term is shown to be
identical to the perturbative prepotential considered in chapter two. By this time, we have
two independent proofs that the perturbative prepotential satisfies the WDVV system: we
have a direct check in chapter two and we have shown that it is the zero order term of a
function that has been shown to satisfy the WDVV system in chapter three.






Chapter 1

The WDVV equations
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Chapter 1

In this chapter we start by introducing the original and generalized WDVV
equations together with some of their physical and mathematical background.
We then discuss the existence of a continuous group of symmetries of the gener-
alized system which will be used in chapter three. Finally, we discuss the pos-
sibility to create a coordinate invariant formulation of the generalized WDVV
equations along the lines of Dubrovin’s work for the original system, which
leads to the concept of Frobenius manifolds. In particular, we explain why the
simplest attempt towards such a coordinate invariant formulation must fail for
the generalized system.

The original WDVV equations

The original Witten-Dijkgraaf-Verlinde-Verlinde equations were put forward in [62], [16].
They form a system of third order nonlinear partial differential equations for a funétioh
N variables.

Definition 1.1. Consider a functiorF (¢, ..., t y—1) and matrices

BF
Fl,=—— — 1.1.1
Filj Ot;0t;0ty, (1.1.3)
The original WDVV equations are given by
F,Fy'F; = F;F;'F, i,j=0,..,N—1 (1.1.2)

where the matrixty is required to be constant,(independent) and invertible. This makes
the variablet, a special one.

The system (1.1.2) is trivially satisfied fof = 1, 2 but extremely difficult to solve for higher

N. Nevertheless, we will find that this highly overdetermihegstem admits exact solutions
for all N. But before coming to the discussion of solutions, let us reinterpret the WDVV
system in terms of families of associative algebras. We introduce the objects

N-1
Cl; = Z Fijm [Fofl]Mk (1.1.3)
m=0

which are symmetric in, j and in generat-dependent. In terms of the matriqés]f =CF
the WDVV system expresses the commutatiod’paindC);

[C;,Cj] =0 i,j=0,.,N—1 (1.1.4)

1 The number of independent third order derivatives grows with N3 while the number of independent
algebraic relations between them grows as N4,

13
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Chapter 1 The WDVV equations

Regarding theﬁ{; as structure constants of an algebra
$id; =Y _ Chior (1.1.5)
k

we find that this algebra is commutative due to the symmetiyjirand associative because
of (1.1.4). Moreover, the algebra has a upit becauseq’;j = J,,. Since this is true for

all values of the; the structure constants in fact form a family of associative, commutative
algebras with unit. We therefore have the following

Proposition 1.2. A function F'(to, ..., ty—1) satisfies the original WDVV equations if and
only if

o the matrixFy (consisting of third order derivatives) is constant

e there exists anV-parameter family of commutative, associative algebras with unit,
whose structure constan(#} are related toF’ through (1.1.3)

This alternative definition of the WDVV equations is why they are also called associativity
equations in the literature. The WDVV system is studied in many different contexts, and
often the family of algebras gets a natural interpretation there.

Example of a solution

The physical context in which the WDVV equations made their first appearance is a two-
dimensional topologicalV" = 2 superconformal field theory [16]. Its Hilbert space of states

is finite dimensional and one of the main objects in the theory is the so-called superpotential
W (z) which in a particular example is a monomial

W(z) = aNt! (1.1.6)
Quantum effects perturb the superpotentidl to
Wi(z) =2V fuy 2V g (1.2.7)

and the physical Hilbert space@{z]/I whereI is the ideal inC[z] generated byy”’ = 2%
Through an operator-state correspondence, the elements of the Hilbertisgaealso con-
sidered to be operators, and one expects an operator algebra

¢iv; = _ Chor (1.1.8)
k

since the repeated operatprp; is again an element of the finite-dimensional Hilbert space.
Indeed, by identifying theb; with representativeg% = 2’ of the basis elements of the
quotientC|x]/I we find that they span the quotient élgebra. Note that this i grarameter
family of commutative, associative algebras with usijt= z° = 1.

2 In mathematical terms, (1.1.7) is an unfolding of the type A singularity

14
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We now introduce a nondegenerate bilinear formm|/I through

L[ ¢x
——d 1.1.9
(6,x) =5 e (1.1.9)
This bilinear form is independent of the representatives chosen for the equivalence classes,
since terms containing/’ clearly don’t contribute to the residue. We can use it to raise and

lower indices ofoj and define

Ciom =gz . 2000m = chionom) (11.10)

2mi W’=0

It follows that Co;; = (¢:,¢;). SinceCy;r, is totally symmetric in its indices, one may
wonder if there exists a functiofi (uy, ..., un—1) such that

0*F
Cijm S A
J Ou;0u 0,
Coi; = constant (1.1.112)

If such a function indeed exists, then it satisfies the WDVV system due to proposition 1.2.
However, it is easily checked that neither equation in (1.1.11) holds. The way to define a
function which does satisfy the WDVV equations is to consider a change of variables from
u; 10 a particular set; which depend polynomially on the;. We mention the next result
without proof.

Proposition 1.3. [16] There exists a set of variablesdepending polynomially on the with
the following properties: the derivatives = at are a good set of generators for the ring

C[z]/I, and the corresponding structure consta@t@m( ) are the third order derivatives of
a functionF'(to, ..., tx—1) with respect to the variables. Moreover, the nondegenerate bi-
linear form whose matrix elements at®;; is constant. Therefore the functidr(t) satisfies
the original WDVV system (1.1.2).

In the physical context, this functiof plays the role of the free energy of the model.

Example 1.4. Among the models with superpotential (1.1.7) we give the free energy for the
one withN =3

1 1
—tots + t2t2 + —t3 (1.1.12)

1 1
“2t + ol

2 2
The free energies for othéyY are also polynomial.

F(t()v tlv t2)

Mathematical background

From a mathematical viewpoint, there is a number of reasons why the WDVV equations
are important. First of all a conjecture of Witten [62], later proven by Kontsevich [36],
states that the free energy for certain 2-dimensional superconformal field theories coincides
with the logarithm of a particular tau function of the KdV hierarchy. Moreover, one can
generalize the mathematical setfirig such a way that the structure constaﬁ‘t; form the

3 In the above setting X is simply a point.
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Chapter 1 The WDVV equations

structure constants of a deformed or ‘quantum’ version of the cohomology ring of a compact
symplectic manifoldX. The functionF’ in those cases contains information about nontrivial
topological invariants ofX, called Gromov-Witten invariants. In facE is a generating
function for these invariants.

Example 1.5. As an example, we consider the quantum cohomology of the complex projective
line P! and planeP? [37]. The quantum cohomology ring for a®¢ is given byC|z]/I

where the ideal is generated by:?*t! — e~*1. In the case oP!, the functionF satisfies the
WDVYV equations trivially since it depends only on two variables

1
F(to,t1) = §t3t1 + el (1.1.13)

The first nontrivial case i®2, whose functiorF takes the form of a power series

1 1 o Nnt37171
Flto, tr,t2) = gtof} + 5t5ta + > (3n—2—1)‘
n=1 :

et (1.1.14)
This functionF' satisfies the WDVV equations if and only if the following relation holds
Fyoo = Ffyy — Fi11F1a2 (1.1.15)

From this relation, one can find the numbe¥s recursively

a®b(3b —1)(2a — b)

Ba—1)i6— 1y el (1.1.16)

Ny=@Bn-4) >

at+b=n

and the first few of them are

Ny = 1
Ny, = 1
Ny = 12
Ny = 620
N; = 87304 (1.1.17)

Ny, receives the interpretation of the number of rational curves of degrea P? going
through3k — 1 generic points, thug' encodes topological data &?2. If we rewrite ' in the
form

1

Qt%tz +t5 tp(ty + 3log(ts)) (1.1.18)

1
F(to,t1,t2) = §t0t§ +

then it is proven in [18] that) and thereforef” actually converges for
Re(ty + 3log(ts)) < log (2).
Integrable structure and the deformed Euclidean connection

Yet another reason to study the WDVV equations is that they are equivalent to the compat-
ibility conditions of a linear first order system with a parameter [18]. Such a realization is

16



considered to be a strong indication of the integrability of the system, thus making it worth-
while to be studied. Consider the first order linear system

(;t +zc¢)¢o i=0,.,N—1 (1.1.19)

wherez is an arbitrary parametey, is an N-dimensional vector of functions and the matrices
[CZ-];‘.c satisfy the following restrictions:

e The matrixCy equals theV x N identity matrix
e All matricesC; aret, independent

e There exists a constant matix such that

Fijm =Y Cf Kym (1.1.20)
k

are totally symmetric i, j, m.

We then have the following result [18]

Proposition 1.6. The compatibility conditions of the system (1.1.19) are equivalent to the
WDVYV equations (1.1.2).

Proof. The compatibility conditions are th@od;v = 0;0;1. Writing this out we get the
following equation

This second degree polynomial inhas to vanish identically, and sindé€ is constant the
first order term ensures existence of a functforvhose third order derivatives afg;,,. It
then follows from (1.1.20) that the matri = K of third order derivatives is constant. The
second order term in (1.1.21) then states that the fundiiatisfies the original WDVV
equations. O

As usual, we can reformulate the compatibility conditions as the zero-curvature conditions

of a connection. We introduce the deformed Euclidean conne&tion CV in terms of the
coordinateg; as follows

o0 _ 82_+chki (1.1.22)
"ot Otiot; —~ 0ty "
The compatibility conditions or zero-curvature relations then read

[@iﬁj} -0 (1.1.23)

The flat coordinates, in terms of which the covariant derivative with respegtimjust the
ordinary derivative, are given by a set&findependent solutions of

8—2—2 9 ) =0 (1.1.24)
oot = oy, | -

17
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Chapter 1 The WDVV equations

Note how the solutions of the first order linear system (1.1.19) as well as the second order
system (1.1.24) have a known dependencegorin fact, sinceC, = I we find the simple
behaviour

U(to, ... tn_1) = eiztoqzj(tla“'atN—l)
x(to,-tn1) = €PX(tr, .. tn_1) (1.1.25)

Making a Fourier transform in thg, variable we find that the WDVV equations are still
equivalent to the compatibility conditions of the first order linear system

(0 + Cido) =0 (1.1.26)

After this Fourier transform, the deformed Euclidean connection is no longer a connection.
Nevertheless, the second order equations

0? , O
T 2}; Cligran | X =0 (1.1.27)

will play an important role in the rest of this thesis, see for example section 3.3.3.

The generalized WDVV equations

In this section we introduce the main topic of this thesis, the generalized WDVV system
of third order nonlinear partial differential equations. Furthermore we provide some physi-
cal and mathematical background to indicate why it is interesting to study these equations.
Finally, we discuss a continuous group of symmetries.

The generalized WDVV equations were introduced in [45]

Definition 1.7. Considef a functionF' (a4, ..., ax) and matrices

OF
Bl = Gas0a,0m.
Kij = Zaquij (121)
q

Here theqo, are possiblyu-dependent, and they are chosen in such a wayhat invertible
for generic values of the variables. The generalized WDVV equations is given by

F,K'F;=F,K'F, i,j=1,...N (1.2.2)

Remark 1.8. The original WDVV equations require the existence of a special variajdad
a set of constants, = d,,0 such thatk = Zq a.Fy, = Fy is a constant invertible matrix.

For the generalized WDVV system we give up constancy ofathd K and thereforek —!
need not exist for alk; .

4 To distinguish between the original and generalized WDVV equations we switch from variables ¢;
to variables a;.
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We can reformulate the generalized WDVV equations in terms of a family of associative,
commutative algebras. We introduce the objects

N
Cl =" Fij [K71™ (1.2.3)

m=1

which are symmetric i, j and in generad-dependent. In terms of the matriqéS]f = ij
the WDVV system expresses the commutatiopaindC;

[Ci,Cj] =0 (1.2.4)

Regarding thei'fj as structure constants of an algebra
did; =Y Chor (1.2.5)
k

we find that this algebra is commutative due to the symmetiyjirand associative because

of (1.2.4). Moreover, the algebra has a upil, a,¢, where thea, are the same as the
ones occurring in the definition df’. Since this is true for all values of thg the structure
constants in fact form a family of associative, commutative algebras with unit. We therefore
have the following

Proposition 1.9. A functionF'(a4, ..., ay) satisfies the generalized WDVV equations if and
only if

e Thereis amatrixs' = > a,F, which is invertible but not necessarily constant

e there exists anV-parameter family of commutative, associative algebras with unit,
whose structure constan(#} are related toF’ through (1.2.3)

It may seem that the generalized WDVV system depends on the particular linear combination
K of third order derivatives, but this is not true. If the equations (1.2.2) hold for sEme

they also hold for any other invertible linear combination of third order derivatives. In this
sense the generalized WDVV equations are indeed a generalization of the original WDVV
system, which puts additional conditions &h To show this we need the following result

[46]

Proposition 1.10. If the generalized WDVV equations hold for a particular invertible linear
combinationK of third order derivatives, it holds simultaneously for all other invertible
linear combinations.

Proof. Assuming that the generalized WDVV equations hold with linear combinatios
>, aqFy, we will prove that it also holds fok™ = - &, F, as long ass " exists. Using
F; = C; K we write out

-1 —1

FK'F;, = F F;=F, F;

Z a,Cy K
q
Z aqCy
q

Z&qu

q

= FRK™! [Z&ch
q

-1
C;K  (1.2.6)

1
F=C;
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Chapter 1 The WDVV equations

The WDVYV equations corresponding I state that th€’; commute among each other and
thereforeFif(*Fj is symmetric in; andj. We conclude that the WDVV equations also
hold for K. The relation between the structure constdﬁ@scorresponding with< andij
corresponding withi are given by

Ci=F,K'=FK'KK~'=D; quFqK_l =D, qucq (1.2.7)
q q

O

As a result, we can require the, occurring ink to be constant: replacing the occurring

in a, by some constant values still leads to an invertible linear combin#fioNote also that
although the choice af, does not affect the functiof, it does affect the structure constants
Cﬁ] of the family of associative and commutative algebras. Taking an algebra on a linear
spacel’ with basis element§e; } and unite = a,¢, the algebra reads

$id; =Y Chor=> Clore (1.2.8)
k k
We can make a new algebra whose structure constants are given by

$id; =Y _ DYy (1.2.9)
k

For an invertible element = Zq G4 the DZ’fj are uniquely defined and form the structure
constants of an associative commutative algebra. The relation betifeand D; is given
by

$i; =D Chon =D "DLonY agpy = DL 6,Cho (1.2.10)
k l q l q

and corresponds precisely with a changeiofrom 3 o, F, to >, &, F, as described in
(1.2.7).

1.2.1 Physical background of the generalized WDVV equations and examples of solutions

The generalized WDVV system arose in the study of four-dimensithal 2 supersymmet-

ric Yang-Mills theory, also called Seiberg-Witten theory [59]. Although this theory is more
complicated than two-dimensional superconformal field theory, Seiberg and Witten managed
to solve the quantum low-energy behaviour exactly including the nonperturbative corrections.
The solution is given in terms of a holomorphic functiétia, ..., ax) which is called the
prepotential. This was a major breakthrough in quantum field theory, where results are often
limited to perturbation theory and nonperturbative results are hard to come by.

After the initial work of Seiberg and Witten, prepotentials were givenXoe= 2 supersym-
metric Yang-Mills theories depending on various inputs, such as the dimension of space-time,
the Lie algebrag and the particle content of the theory. The main objects of study in this the-
sis are the prepotentials for four and five-dimensional spacetimes, for any simple Lie algebra

5 Here N denotes the rank of the Lie algebra g of the gauge group G
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and for a fixed particle contéhtand we will take some time here to sketch the physical back-
ground of the four-dimensional theory. A precise mathematical definitiof isf postponed
to chapter® and3.

Quantum field theories typically give a good description of the point particles occurring in
the theory in terms of perturbation theory, but they give a bad description of the solitonic
objects occurring in it such as monopoles or instantons. The point particles are usually called
local and the solitonic objects nonlocal. In the case of four-dimensional pute 2 su-
persymmetric Yang-Mills theory the classical Lagrangian contains fields which describe the
(local) gluons and their supersymmetric partners. As a first step towards quantization one
finds a minimum of the potential and does perturbation theory around it. A typical feature of
N = 2 supersymmetric theories is that the classical potential has a whole family of minima,
parametrized by a Weyl invariant polynomiabn the (complexified) Cartan subalgelbraf

g. Due to the Higgs effect, the gauge symmetry is broken fgodown toh and the local
particles split into two groups: on the one hand there are the massive particles and on the
other there are th& massless local particles which are the gauge bosons for the gauge group
h. There is a massive particle for each positive re@nd its mass depends arthrough a

local functiona(u) taking values in the Cartan subalgebra:

M, = |[(a,a(u))| (1.2.11)

Here(.,.) denotes the Killing form.

This picture survives under quantization, i.e. there is still a family of quantum vacua and each
vacuum defines its own physics since the mass spectrum depends on it. In a theory which is
supposed to describe nature this is undesirable since there is no way to decide which vacuum
is the ‘real’ one seen in nature. However, the existence of this space of vacua actually helps
solve the low-energy physics. Since the theory has a mass gap it is expected that for low
energies the theory can be described by a Lagrangian containing only the massless patrticles.
The local functiona is such that for generic large values|ef the massed/,, are big and
perturbation theory is valid. In this regime it is found that the massless particles are all
local and they are the gauge bosons. All massive particles are charged under the broken
gauge groug. A generic massive particle is described by electrical charge numifers

and magnetic charge number® and is called a dyon. These charge numbers generate an
elementy = S n¢a; andg = SN n"aY in the root latticeA, and the coroot lattice

Ag respectively. The massive local particles are purely electrically charged and the solitonic
objects acquire a magnetic charge. The mass of a dyon is given by

OF (a)
Oa

Mgyq=1(g,a) — (g, )| (1.2.12)

Here the local holomorphic functiafi(a) is called the prepotential. The low-energy theory

is given by an effective Lagrangian containing only fields corresponding to the massless local
particles, and the information in this Lagrangian is equivalent to knowing

This description is however not valid for all valuesf For certain values ofi nonlocal
particles can become massless, and they should be described in the effective Lagrangian of
the low-energy theory. Seiberg and Witten have succesfully used the concept of duality in
the solution of the low-energy behaviour: they suggest which solitonic objects can become

6 We consider only so-called pure Yang-Mills theory, i.e. only gluons and their supersymmetric
partners and no quarks
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Chapter 1 The WDVV equations

Figure 1.1: Sketch of a moduli space with different singularities where dyons become massless. Around
each singularity there is a patch of moduli space, each with its own prepotential describing the low-
energy physics there. Picture taken from [43]

massless and for which values of and they use different quantum field theory which

gives a good local description of that solitonic object in the neighbourhood of that point.
The objectsa and F can then change rolea,now describing masses of solitonic objects.
With some further effort, it is shown that both = (a;,a) and g{ have monodromies
when going around the points in the Cartan subalgebra where additional particles become
massless. In fact, these points introduce singularitie€[in"" whereu takes its values,

and we will denote the total subset of such pointsty The object(a;, 3_9 turns out to

be a section of a trivial vector bundle @&[h]"" — A whose structure group is a subgroup

of Sp(2N, Z), the symplectic group. The mass formula (1.2.12) is invariant under these
symplectic transformations. The identification of the structure group together with the local
data around the singularities translate the low-energy descriptidh ef 2 supersymmetric
Yang-Mills theory into a Riemann-Hilbert problem.

Starting in the regime for large ;| where the functiot¥ (ay, ..., a,,) describes the low-energy
physics, an element of the structure group will take us to a figwegime, and since the
structure group is symplectic we can integrate the corresponding abjet a function

f(ah ...,an) which describes the physics in the new regime (see also section 1.2.4). All
the local patches of [h]"V — A are therefore on equal footing, each having its own function

F describing the low-energy physics, see also figure 1.1. In chapter 3 of this thesis we will
show that all these function® satisfy the generalized (but usually not the original!) WDVV
equations. Indeed, the symplectic gratyp(2N, Z) is shown in section 1.2.4 to be a group of
symmetries of the generalized WDVV system and therefor& atisfy the WDVV system

if one of them does. Furthermore, these prepotentials can be written as a power series in an
auxiliary parameter, which serves as an energy scale in the physical theory. It is shown in
chapter 2 that if the prepotential satisfies the WDVV equations, the zero order teraiso

does. This zero order term is called the perturbative prepotential, and as an example we give
here the perturbative prepotential corresponding to the Lie algékra

Example 1.11. For the gauge grouppU (N + 1) with Lie algebraAy, we give the four-
dimensional perturbative prepotential

N N
1 1
Frert = 1 i JEZl(ai — aj)Q In ((ai — aj)2) + 5 ;:1 a?ln (a?) (1.2.13)
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1.2.3

which satisfies the generalized WDVV equations (1.2.2). It can be checked that none of the
matrices of third order derivatives is constant, and theretsye,, does not satisfy the origi-
nal WDVV system (1.1.2).

Mathematical background

The generalized WDVV system and corresponding Seiberg-Witten theory have made im-
portant contributions to various areas of mathematics. Here we touch upon some of these
contributions, thus placing the system in its mathematical context.

The original WDVV equations are related to integrable systems in the sense that certain
solutions to these equations are the logarithms of certain tau functions of the KdV hierarchy.
Similarly, the generalized WDVV system is related to the Whitham dynamics of the periodic
Toda chain since the Seiberg-Witten prepotentials are logarithms of tau functions of this
integrable hierarchy [22], [48]. Although we do not discuss the Whitham hierarchy in this
thesis, the periodic Toda chain and its relation with Seiberg-Witten theory is discussed briefly
in section 3.1.2.

Another reason to study four-dimensioddl = 2 supersymmetric Yang-Mills theory is that

its ‘twisted’ versiorl plays an important role in the definition of so-called Seiberg-Witten
invariants of four-manifolds [63]. These invariants are equivalent to Donaldson’s invariants
but much simpler to calculate.

Finally, we note a connection between the generalized WDVV equations and the ‘tau function
of a curve’ [61], [38]. In this context it is shown [9] that the logarithm of a certain tau func-
tion 7(to, t1,%1, ..., tn, tn) Of the dispersionless 2D Toda hierarchy satisfies the generalized
WDVYV equations, when it is considered only as a function of the variagles, ..., t v .

Integrable structure of the generalized WDVV equations

In section 1.1.3 it was noted that the original WDVV equations are equivalent to the com-
patibility conditions of the first order linear system (1.1.19) with spectral parametén

this section we prove a similar result, but without a spectral parameter, for the generalized
WDVYV system. Consider the first order linear system

(&—f—ClD)w =0 i=1,...N (1.2.14)
whereD = >° 40, is afirst order differential operator with constant coefficieitss an

N-dimensional vector of functions and the matri¢€§]f in combination withD satisfy the
following restrictions:

e The matrixy__ a,C, equals theV x N identity matrix
e There exists an invertible matrix such that
Fijm =Y _ Cf Kym (1.2.15)
k

is totally symmetric iri, j, m.

7 A similar twist is made in the 2-dimensional supersymmetric conformal case
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e The following relation holds

8;K = D (C;K) (1.2.16)

We then have the following result (see also [54])

Proposition 1.12. The compatibility conditions of the system (1.2.14) are equivalent with the
generalized WDVV equations (1.2.2).

Proof. The compatibility conditions are thatd;v = 0,;0;¢. Writing this out we get the
following equation

(GZCJ — 8JCZ - C;D (Cj) + CJD (CZ) )D + [C“ CJ] D? =0 (1217)

This is an operator identity, so the first and the second order tefithhave to vanish sepa-
rately. Writing out the first order term using the conditions (1.2.15) and (1.2.16) we find
0 = &C’J — 8301 + C]D (CZKKil) - C;D (CjKKil)
= 0,0; —9;C; +C; (O K)K™' — C; (0;K) K" +[Cy,C;) KD (K1)
= (0;F; —0;F;) K" +[Cj,C;) KD (K™) (1.2.18)
Therefore the compatibility conditions of (1.2.14) boil down to
[Ci, Gy
0;F; —0;F; = 0 (1.2.19)

and due to equation (1.2.15) the matfixis identified ask = Zq aqF,. The compatibility
conditions are thus equivalent to the generalized WDVV system. O

The fact that the generalized WDVV system is equivalent to the compatibility conditions of a
first order linear system is a sign that indicates that the system may be integrable, even though
there is no spectral parameter in (1.2.14). This makes the system an interesting one to study.

Duality transformations and symmetries

In this section we consider two continuous symmetry groups of the generalized WDVV sys-
tem: a general linear group of classical symmetries (consisting of linear changes of the vari-
ables), and a symplectic group of contact symmetries (consisting of so-called duality transfor-
mations). For the symmetries of the original WDVV equations, we refer to [18] and restrict
ourselves to mentioning that the second symmetry group which we are about to discuss is not
a symmetry group of the original system.

Lemma 1.13. The generalized WDVV systems are invariant under linear changes of coordi-
nates.

Proof. We define a linear change of coordinafigs= ) ; (A*l)f a; and consider the new
function

F(al,...,aN) :F(al,...,aN) (1220)
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The third order derivatives aof' transform under linear transformations as if they were the
components of 3, 0) tensor. From the definition of the structure constants of the associative
and commutative algebra

kl

—1
C = Fy (Zaqu> (1.2.21)
q

we find that the new objects

CE = Fij (Z@qﬁq> (1.2.22)

are given by

tv

—1
q,s

where thea, are the transformed,,. Here we have used the summation convention that
indices occurring twice are summed over. The linear transformation is a symmetry if and
only if the transformed objec@’fj are the structure constants of an associative, commutative
algebra with unit. To prove that this is indeed the case, we decompose the transformation of
theC{fj into two steps. First we consider the objects

kl

-1
D}, = Fij (Zanng> (1.2.24)
q,s

which are structure constants of an associative and commutative algebra with unit, see propo-
sition 1.10. Let this algebra be defined on the linear spaesth basis{¢; }. A linear change
of coordinates in/ then leads to the new structure constaﬁj? which are obtained from

DF; by considering it to be a (2,1) tensor, i.e.
s roAs Z1yk
Cl = AjA5DL, (A7), (1.2.25)

This constitutes the second step in the transformation oﬁ]ﬁ@e The C‘fj are the structure
constants of the same algebra aslﬂjf?(but with respect to a different basislif) and the unit

is given bqu Gqpq. Thus the transformed functiaf(a, , ..., ay) satisfies the generalized
WDVV system. O

We will now discuss a group of contact symmetries, which are different from classical sym-
metries in the sense that they do not only transform the varialldsut also the function

F and its first order derivatives;. We recall that from physics it is known thaf and F;

are to be treated on equal footing and together they form a section of a bundle with structure
groupG C Sp(2N,Z). ltis therefore tempting to suggest thgt(2V, Z) or a subgroup of

it is a group of contact symmetries of the generalized WDVV system. Indeed, we have the
following result [12], [14]
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Chapter 1 The WDVV equations

Proposition 1.14. Let M be a constan2 N x 2N matrix. The transformation

al ai ai

a a A B a

Nl=m| V| = N (1.2.26)
Fi Fy C D Fy

Fy Fy Fy

is a symmetry of the generalized WDVV system if and only if

e det(M) # 0andM € GL(1,C) x C® Sp(2N,R) so M is up to a nonzero scalar
given by an element of the complexified symplectic group,

or

e det(M) = 0 and the third order derivatives of the transformed function are zero. We
will specify precisely when this non interesting case occurs.

oa;

Proof. For thea; to be a good set of coordinates we must hdme( o

) # 0 and therefore

(A+BT)"!
must exist, wherd" is the matrix given byl;; = %. Since this condition depends on
1Udj
the initial functionF'(a), we consider it to be a condition for genefit Next we require a
function F'(a4, ..., an ) to exist whose first order derivatives are thg which is the same as
demanding symmetricity of the matrix

T=(C+DT)A+ BT)™? (1.2.27)

Symmetricity of 7" must hold for alll” which come from a solutiod” of the WDVV equa-
tions, and in particular for any symmetric constamtatrix 7. The symmetricity ofl” there-
fore leads to the following three equations

AT = T4
B'D = DTB
[(B"C - DTA)T]" = T(BTC - DT A) (1.2.28)

TakingT = I in the last of these equations implies it C — DT A is a symmetric matrix,
which again according to (1.2.28) should commute with all constant symmetric mattices

8 If T is constant, it originates from a second order polynomial F' which is trivially a solution of the
generalized WDVV system.
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Therefore it is a multiple of the identity. This leads to the following three conditions

AT = T4 (1.2.29)
B™D = DTB (1.2.30)
BTC -DTA = \I (1.2.31)

If A = 0thendet(M) = 0 and we will treat this case later. The effect)ot~ 0 is that of a
scaling ona; and F; with a factorv/A. Such a scaling is clearly a symmetry of the WDVV
system, so we can divide it out and set —1. Thendet(M) = 1 and the three conditions
can be summarized in the single statement

MTQM =Q (1.2.32)
where
0 I
Q= (1.2.33)
—I1 0

and thereforel/ € C ® Sp(2N, R). Summarizing what we have done so far, we have seen
that requiring the existence of a new functidiia) leads to the set of equations (1.2.29)-
(1.2.31). We will find that the WDVV system (1.2.2) puts no further conditions on the matrix
M. In order to show this, we will show that for nonzekahe third order derivatives of'
transform as the components of&0) tensor, i.e.

Z dap, Daq Day oF

_— 1.2.34
da; 0a; Oay da,0aq0ay (1.2.34)

5‘a23a]3ak
This transformation is the same as for a linear change of coordinates apart from the fact
that 8”*" needn’t be constant. The proof of lemma 1.13 can then be used to show that the

transformation is a symmetry of the WDVV equations. In order to show that (1.2.34) indeed
holds, we calculate

ot
8(Lk
Working out the first factor using (1.2.31) and symmetricity/ofve find

- (D - TB) (% (A+ BT)™" (1.2.35)

D-TB = (AT+TB")" (AT +TB") (D-TB)

(AT +TB") " (-AI+CTB+TD"B ~ A"TB - TB"TB)
— AAT+TB") (1.2.36)

and therefore writing out coefficients (1.2.35) becomes

0Ty _ Ay day 0T,y Day

1.2.37
7 8&1 6ak 8@7' ( )

(’)ak

which for nonzerao\ implies (1.2.34) up to a factor. For = 0 we find that the third order
derivatives ofF” are zero and this function trivially satisfies the WDVV system. The con-
ditions (1.2.29)-(1.2.31) are therefore precisely the ones necessary to let the transformation
(1.2.26) be a symmetry of the WDVV equations. Pot 0 this symmetry will be trivial, for

A # 0 some highly nontrivial symmetries can occur. O
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Chapter 1 The WDVV equations

Remark 1.15. For transformations of the form (1.2.26) witket (/) # 0 the condition that
there should exist a new functidri(a) already demand3/ to be symplectic up to a scalar.
The generalized WDVV equations then put no further condition®/amhatsoever.

To illustrate that the symplectic transformations just discussed can range from very simple
to very complicated, we discuss two extremal situations, both playing an important role in
physics. First consider a symplectic transformation of the form

A B I 0
- (1.2.38)

¢ D c I

Such transformations are called perturbative duality transformations and they only change
the functionF' by adding quadratic pieces to it. These do not contribute to the third order
derivatives and are obviously symmetries of the generalized WDVV system.

On the other hand, consider a transformation of the form

A B 0 I
= (1.2.39)

C D -1 0

This transformation is called a nonperturbative or strong coupling duality transformation and
it is known to be equal to a Legendre transform

F(dl,...7d]v) :F(al,...,aN) —ZaiFi (1240)

Indeed, the matrix of coupling constarfs= 83_25; - is transformed to-7-! and the cou-
pling constants are inverted. If the original coupling constants were large, the new ones will

be small.

Since this Legendre transform is very complicated, we will restrict ourselves to a function of
only one variablgto demonstrate what happens. Consider therefore a one-variable analogue
of (1.2.13)
1 2 2 1 2

F(a) = 1 log(a®) — 1 (1.2.41)
where the quadratic term has been inserted for later convenience. The transformed variable
is given by

F

= g—a = alog(a) (1.2.42)
This equation has infinitely many solutions ferbut only one of those equals 1 at= 0.
This solution isa = ﬁ(a) where LW denotes Lambert's W function, which is analytic at
zero. Using (1.2.40) we find that the transformed function equals

o - (o) o (o) )3 (o) @2

9 A function of one variable trivially satisfies the WDVV system. The only purpose to consider it
here is to show what the transformed function looks like.

s}
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13

Coordinate invariance and Frobenius manifolds

Roughly speaking, the WDVV equations express the fact that the third order derivatives of a
function F'(t) form the structure constants of an associative and commutative algebra. This
t-dependent family of algebras can be considered as a bundle over the\épalcere the's

live. It was Dubrovin’s idea to identify this bundle with the tangent burillg of A and

put the algebra structure on each of the tangent pldhks. This idea leads to the concept

of a Frobenius manifold, a coordinate invariant description of the original WDVV equations.
In this section we will define what a Frobenius manifold is and why it is not to be expected
that a similar type of manifold can be introduced to describe the generalized WDVV system.

Definition 1.16. [18] A Frobenius algebra is an associative, commutative algebra with a unit
and a symmetric nondegenerate bilinear fafm) on it such that

(ab, ) = (a,be) (1.3.1)

Definition 1.17. A Frobenius manifold/ is a manifold with a Frobenius algebra structure on
each of its tangent planég M, depending smoothly on the poindand moreover satisfying:

1. (.,.) is aflat metric onM

2. The unit vector field is covariantly constant with respect to the Levi-Civita connection
associated with the metric

Vee=0 (1.3.2)

3. The tensor(uv,w) is symmetric due to the Frobenius algebra structure. It can be
differentiated and the resuW , (uv, w) is required to be symmetric in all vector fields
U, V, W, 2.
Remark 1.18. As we will see, in terms of certain special coordinates a Frobenius manifold
leads to a solutiorF’ of the original WDVV equations. In the usual definition of a Frobenius

manifold, there are additional requirements which lead to a certain quasi-homogeneity of the
function F'. To make the point of this section more clear, we have omitted these requirements.

A solution F' to the original WDVV system gives rise to a family of Frobenius algebras whose
symmetric bilinear fornd., .) is given by(9;, 9;) = Fo,;. We mention the following result

Proposition 1.19. [18] There exist coordinates; on any Frobenius manifold/ such that
the objects

(005, 0k) (1.3.3)

are the third order derivatives of a functioR(to, ..., ty_1) satisfying the original WDVV
equations. Moreover, all solutions to the original WDVV system are obtained in this way.

Proof. Due to the flatness condition 1, there exist coordingt@sterms of which the metric

is constant. The covariant derivatives given through the Levi-Civita connection reduce to
ordinary derivatives and therefore condition 3 ensures existence of a furctidmose third
order derivatives are given by

D3F(t)

3t16t]8tk (azaj,ak) ;CU (8l’ak) (134)
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Chapter 1 The WDVV equations

In terms of the uniEq a0, Of the algebra, the metric is given by
(9;,0;) Z oy Fyij (1.3.5)

and due to condition 2 the, are constant and we can make a linear change of coordinates
(thus not losing constancy of the metric) in such a way that the metric is givery by do 4.

To see that all solutions to the original WDVV equations are obtained in this way, one can
easily construct a Frobenius manifold associated to each solution using the above formulas
for the metric and its Levi-Civita connection. O

What we are interested in is the generalization of a Frobenius manifold to the setting of the
generalized WDVV system. We should therefore drop all conditions in the definition of a
Frobenius manifold which cause the metric to be given by the third order derivatife of
with respect to a special coordindtg

Definition 1.20. A generalized Frobenius manifold is a manifold with a Frobenius algebra
structure on each of its tangent plangg\/, depending smoothly on the potrand moreover
satisfying:

1. (.,.) is aflat metric onM

2. The tensor(uv,w) is symmetric due to the Frobenius algebra structure. It can be
differentiated and the resu¥ . (uv, w) is required to be symmetric in all vector fields
U, UV, W, 2.

The two conditions again ensure existence of a system of coordimagash that there exists
a functionF'(a) whose third order derivatives are given by

03F(a)

da;0a;0a, (0:0;,0%) ZC (91, 9%) (1.3.6)

In terms of the uniEq a0, of the algebra, the metric is given by
(8;,8;) Z g Fyij (1.3.7)

and equation (1.3.6) is equal to (1.2.3). Therefore the funclicsatisfies the generalized
WDVYV system. But although any generalized Frobenius manifold gives rise to a solution
of the generalized WDVV equations, the converse statement is false because the linear com-
bination K = Zq aqF, occurring in the generalized WDVV system is not required to be
constant, whereas a generalized Frobenius manifold does have this condition due to the flat-
ness of the metric. Of the three main types of solutions to the generalized WDVV system
that we will study in this thesis, two in fact can be obtained from generalized Frobenius man-
ifolds. These are the four- and five-dimensional perturbative prepotentials studied in chapter
2. For the other type of functions, studied in chapter 3, we do not have closed formulas and
it is difficult to determine whether there exists a constant linear combination of third order
derivatives. There is however nothing in the physical context nor in the construction of these
functions that would suggest that such a combination exists [47].

We conclude that the generalized WDVV equations are probably not described by the most
straightforward generalization of a Frobenius manifold, as introduced in definition 1.20. We
will not pursue the coordinate invariant formulation of the generalized WDVV system any
further.
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Perturbative prepotentials as explicit solutions






2.1

Chapter 2

This chapter deals with several perturbative prepotentials which are obtained
in a certain limit from the full prepotentials of four and five-dimensiokak 2
supersymmetric Yang-Mills theory as discussed in section 2.1. We will restrict
ourselves to pure Yang-Mills theories (describing gluons and not quarks) and
find in section 2.2 that the perturbative prepotentials of the four-dimensional
theory satisfy the generalized WDVV system. The five-dimensional prepoten-
tials discussed in section 2.3 are more problematic, in the sense that they do
not satisfy the WDVV equations. This problem can be overcome by introducing
an extra variablez,, which unexpectedly turns the prepotentials for all gauge
groups into solutions of the original WDVV equations for the expanded set of
variables, withay playing the role of the special variable. Finally in section
2.4 we will discuss the role that certain physical parameters, viz. the energy
scale and compactification radius, can play as new variables.

Perturbative limits

The solutions to the WDVV system coming from Seiberg-Witten theory typically depend on
an energy scalg. Despite its importance within the physical contextyill play the role of

an auxiliary parameter as far as the WDVV equations are conceriéaenever a solution to

a system of linear differential equations can be written as a formal power series in a parameter
i, then the term of order zero in this expansion also satisfies this system. We will call such a
zero order term a perturbative limit. We will now show explicitly that a perturbative limit of

a solution of the nonlinear WDVV system also satisfies this system.

Suppose that the full solution and therefore the matrices of third order derivatives can be
written as formal power series in a parameter

(o)
ZFPMP =F%ay,...;an) + F' (a1, ...,an)p + ...

F(a17' ,CI,N) -
p=0
Filpm = D ? 2.1.1)
p=0

The inverse of a matrix of third order derivatives can also be expressed as a formal power

1 The possibility to treat 1 as an additional variable for perturbative prepotentials will be considered
in section 2.4
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Chapter 2 Perturbative prepotentials as explicit solutions

series by using the geometric series

[Fi™! = (F,S(1+[F,S]_1Fklu+...))_l
Z(— [F£]1F£MP> F)
q=0 p=1
= [T - R TR ED) T et 0?) (2.1.2)

Substituting these power series into the WDVV system (1.2.2), we find immediately that the
perturbative limitF° satisfies the WDVV equations separately. This is not true in general for
F', F? etcetera. As a counterexample, we will consifiér(the one-instanton correction) for

the simplest case of a Seiberg-Witten prepotential, namely for four-dimensional pure gauge
theory with A 5 gauge group. In this cagé' is given by (see e.g. [15])

1 1
Fl = — 2.1.
) 211, 2@ — a;)? +j1;[ e (2.1.3)

We have checked explicitly for smaN that it does not satisfy the WDVV system.

We have seen that perturbative limits of solutions to the WDVV equations are solutions them-
selves. Therefore if we can prove that the full prepotentials satisfy the system, we need
not prove the same statement for their perturbative limits. There are however various rea-
sons to study the perturbative limits in their own right. For one thing, they can be written
down explicitly, in contrast to the full prepotentials. Furthermore, for the fact that the four-
dimensional perturbative prepotentials satisfy the WDVV equations one can give a proof
which makes the Lie algebraic background particularly clear. By studying this proof we can
overcome the difficulties arising in the five-dimensional context.

We will now describe the perturbative limits of prepotentials for pure Seiberg-Witten theory.
For any simple Lie algebrgof rank IV, consider the following function

Flay,...an) = > f((a,a)) (2.1.4)
aER
wherea = aje; + ... + ayen in terms of a basige;} of the root spaceR of g. The
bracket(.,.) represents the Killing form on the Cartan subalgebrg.ofWe will call f the
base function of the prepotentiél and the respective base functions for the four and five-
dimensional physical theories are

1
falz) = 53:2 log(z) (2.1.5)
_ Ll Ly ey loa lgne®™
fs(x) = i 4L23(e ) = i 12 3 (2.1.6)

In the process of proving that various prepotentials satisfy the WDVV system (1.2.2), it is
very convenient to make a suitable choice for the linear combindiaf third order deriva-

tives of . In the four-dimensional case we can take it to be the Killing form, whereas in the
five-dimensional theory this is no longer possible. Other choices are then required to make
K manageable, e.g. constant or diagonal.

The four-dimensional perturbative prepotentials are discussed in detail in section 2.2. Section
2.3 contains a discussion of the problems associated with five-dimensional prepotentials and
finally section 2.3.2 resolves these problems in a natural way by adding an extra variable.
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2.2

Four-dimensional perturbative prepotentials

All perturbative prepotentials of four-dimensional puve= 2 supersymmetric Yang-Mills
theory are given by substituting into (2.1.4) the following base function

fa(z) = %xz log(x) (2.2.1)

so that its third order derivative equals

1
" (x) == (2.2.2)
X
The Lie algebraic structure together with this particifl@nsure that the functiof (a4, ..., ayn)
satisfies the WDVV system (1.2.2). As a matter of generalization, we can even take any root
system associated to a Coxeter group to replace that of the Lie algebra.

Theorem 2.1. [49] For any root systenR? of rank IV, the function

1
F(ay, an) = 5 ) (a,0) log((a, a)) (2.2.3)
aER
satisfies the WDVV system. Here the bragke) stands for the standard Euclidean inner
product on the root space. In caseis the root system of a Lie algebra, this bracket equals

the Killing form.

Proof. For three reasons we will adapt the proof in [49]. First, we no longer have to differ-
entiate between long and short roots so that the proofs for simply laced and non simply laced
Lie algebras become the same. Furthermore the adapted version allows the generalization
to arbitrary root systems. Finally, the proof given below can easily be adapted to suit the
five-dimensional situation.

The third order derivatives df' are given by

Fij, = Z %(a,ei)(a,ej)(a,ek) (2.2.4)

aER & a)

where we have taken a badis, ..., ey } for the root space. A natural choice for the matrix
Kis

N
K=Y a;F (2.2.5)
j=1

where we recall that the notatidn stands for a matrix of third order derivatives

OF
(Fj)p = 9 Oandar (2.2.6)
Now the matrix/’ becomes
(Z -(O[, 6“)@ ’)(Oﬁ ek)(a7 6[)
Ky = Z At = Z(a,ek)(a,el) (2.2.7)

(o, a)

a€ER acR
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Chapter 2 Perturbative prepotentials as explicit solutions

K is the matrix of a bilinear form on the root spaBe Applying an elementv of the Coxeter
group onR, we find

Ky — Z(a,wek)(a,wel) = Z(wa,ek)(wa,el) = Ky (2.2.8)
aER a€ER

and since all bilinear forms which is invariant under the Coxeter group are proportional to the
Euclidean metric, we conclude thatis the matrix of the Euclidean metric in the ba&is}.
In the case of a simple Lie algebra, this is the matrix of the Killing form.

Taking {e;} to be an orthonormal basishe left hand side of (1.2.2) becomes

ZFljk Flmn - Fm]k (K_l)kl Fiin = Z Fz]kamn - ijkazn
k
_ (a, B)(a, €;)(B, en) [(@, €) (B, em) — (@, em) (B, €i)]
B gzﬁ T (@ao (229)

Because this expression is antisymmetrig andn, it is equal to

Z Z a a (ﬁ7 OL ei)(ﬂ7em) - (O"em)(ﬁa 61)} X

a,BER

[(O" ej)(ﬂ, en) - (a, en)(ﬁv ej)} (2.2.10)

In casea = (3, the contribution to (2.2.10) is zero. Butdf # 3 the reflections in these two
roots generate a nontrivial Weyl group elemeqs = w. Thus we can split the sum in
(2.2.10) into these Weyl group elements

>y et (e e) (B, em) — (@, em)(8, €3)] X (2.2.11)
Y s = w (0, €)(B,en) — (a,€0)(B, €5)]
a,0€R

To prove that this expression equals zero, we will use the following Dunkl identity

Proposition 2.2. [20] For any root systenz with corresponding Coxeter groupy’ we have

1
> B(a,ﬁ)m =0 (2.2.12)
0ol =W
a,B€R

for any bilinear formB satisfying the following conditions

B(a,8) = B(B,a) (2.2.13)
B(oya,0,8) = B(w,f) Vy € RN{Ra® R} (2.2.19)

2 Changing the basis of the root space amounts to a linear change of the variables a;, under which
the WDVV system is invariant
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In our situation we are dealing with

B(a, B) = (o, ) [(a, €;)(B: em) — (a, em ) (B, €:)] x
(e, e5)(B,en) — (a,en)(B,e;)]  (2.2.15)

Clearly, condition (2.2.13) is satisfied. The most direct way to see that condition (2.2.14) also
holds is to introduce the antisymmetric two-forrhin the two-dimensional spadeéa © RS

by
C(z,y) = (z,e:)(y, em) — (v, €:)(x, em) (2.2.16)

Since there is up to a constant only one antisymmetric bilinear form in a two-dimensional
space, we find that under a reflectionRw @ R the formC(«,y) is only changed by a
constant factor. Since a reflection has order two, the facttisFor sake of completeness,
we will verify explicitly that both antisymmetric forms appearing #{«, 5) get the same
factor—1 so that their product is invariant. Therefore condition (2.2.14) is satisfied.

We will use the following lemma:
Lemma 2.3. For any rooty € {Ra & RS} we have
(oya,e)(08, em) = —(a, €;) (B, em) + Symmetric (2.2.17)
where symmetric stands for terms which are symmetriaimd .
Due to the antisymmetry adB(«, ) in ¢ andm, the symmetric terms drop out and it is clear

that this lemma ensures that condition (2.2.14) is met and therefore the WDVV system (1.2.2)
is satisfied by the functiof’. We will now prove the lemma.

Proof. Writing out (o,«, €;)(0+ 3, e, ), We find

(090, €)(04B ) = (t,05) (s ) —
2 [mw, em)(1:e) £ (B.7) (00 (3, >] n

(7,7)

e 7)2(oz,v)(ﬂ,v)(%ei)(%em) (2.2.18)

where the last term is symmetricimndm. Rewriting the rest using = g1+ g2 3, we find

(@.e)(Brem) - [mmw, em) (1 e1) + (B,7) (s (3, em>]

_2
(v,7)

= (@ e))(Brem) — —

[C%)

(e +92ﬁ77)(o‘7€i)(ﬂ76m):| = —(a, &) (B, em) + symmetric (2.2.19)

[gzw, ) (B em)s (B, 5) + 91 (8 7) (@ em), (s 0i)+

|
|
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This concludes the discussion of four-dimensional perturbative prepotentials. We will see
in the next section that the five-dimensional situation is more complicated. The niatrix
can no longer be taken to equal the matrix of the Killing form, and as a consequence of this
we can no longer use the Dunkl identity. In fact, the generic five-dimensional perturbative
prepotential does not satisfy the WDVV system. These problems and their resolutions will
be discussed in the next section.

Five-dimensional perturbative prepotentials

The perturbative prepotentials of the five-dimensional gauge theories calculated with quan-
tum field theory techniques are given by (2.1.4) with base function

O R | 1 X e 2k
f5($) = 61'3 — ZL’L?’(Q 2 ) = 61:3 — Z Z ? (231)
k=1
whose third order derivative is
12 (x) = coth(x) (2.3.2)

The corresponding prepotentials dot satisfy the WDVV system. The reason for this is that
the conditions (2.2.13) and (2.2.14) are not satisfied and the Dunkl identity doesn’t hold.

For type Ay Lie algebras it is shown in [24],[47] that the naive prepotential needs to be
corrected by adding cubic polynomial terms coming from string theory. These terms are Weyl
invariant and, as we will see later, they ensure that the fypeepotential now does satisfy the
WDVYV equations. Adding similar terms to the prepotentials for other classical Lie algebras
leads only to partial success: first of all, there are no cubic Weyl invariant polynomials for
Lie algebras ofB, C, D type. Furthermore, adding such cubic terms despite the loss of Weyl
invariance does not lead to solutions. If we include a free parameter in the prepotentials
however, in such a way that tHe and D type prepotentials are special cases, then we obtain
solutions to the WDVV system. These solutions are given by fixing the new parameter to
values which have no natural Lie algebraic interpretation. Therefore the connection with Lie
algebras, which was so important in the four-dimensional case, seems to be lost for at least
some of the classical gauge groups. The problems just described and their partial resolutions
will be discussed in section 2.3.1.

The best results for the five-dimensional situation are obtained by adding an extra variable
to the prepotentials. Remarkably, this simple procedure causes them to satisfy the original
WDVV system and restores the important role of the Dunkl identity in the proof. These
results will be discussed in section 2.3.2.

Problems in five dimensions

In this section we will give several theorems concerning five-dimensional prepotentials for
classical Lie algebras, obtained in [28]. We will find that generically these prepotentials do
not satisfy the WDVV system, in contrast to their four-dimensional counterparts.
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We consider functions of the following type

N
F(ay,...,any) = Z (a—f5(ai_aj)+(X+f5(ai+aj)>+n2f5(ai)

1<i<j<N i=1
A 3 . N o N
2 3
+ 5 (; ai> + B <; ai> ;aj + 6 ;ai (2.3.3)

where we adopt the notation of [47]. The general form (2.3.3) is motivated by physics, see
for instance [24],[4],[56]. In particular, the second line contains cubic terms coming from
string theory, serving as corrections to the naive field theoretic perturbative prepotentials.
These represent the most general cubic expression which is preserved by permutations of the
variablesa, ...,ay. The perturbative prepotentials far, B and D type Lie algebras are
obtained as special cases of this general funckion

For various combinations of the parameters we will investigate whether ofF reattisfies
the WDVV system (1.2.2). The method used involves making an appropriate choice for the
matrix K, although the results are of course independent of this particular choice.

2311 The simplest case

The simplest set of parameters we considetis= n = 0. These values do not correspond to
an actual prepotential from physics, but we do find solutions to the WDVV system. Without
loss of generality we can chose = 1 by scalinga, b, c.

We can prove the following result

Theorem 2.4. The function (2.3.3) witlv_ = 1, ay = 0 andn = 0 satisfies the WDVV
system (1.2.2) if and only if the following relation holds

Nb® +3b%c —ac® + 3Nb+c+ N?a=0 (2.3.4)

More accurately, this relation is correct in the generic case thatNéth- ¢ # 0 and Na +
2b # 0. Special cases will be discussed separately in the proof.

Proof. Writing 5;; = f"(a; — a;), the third order derivatives df are

Fk‘lm =a+ 5kl5lm Z ﬁkq + 3b +c| + 6kl(1 - 6k‘m)(ﬁmk‘ + b)"’
q#k

Skem (1 — 61) (B + b) + S1m (1 — 6x1) (Bt + 0) = aUpm + (Vi),,,,  (2.3.5)
We take a specific linear combinatidt = Zj.vzl F; and using (2.3.2) we find
K =(Na+2b)U+ (Nb+ o)l (2.3.6)

Special situations occur whée¥ia 4+ 2b = 0 and / orNb + ¢ = 0. The first results i being
a multiple of the identity and the second causés$o become singular. For the moment we
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Chapter 2 Perturbative prepotentials as explicit solutions

will work with generic K and we will come back to the special cases later. The inver$é of
equals up to a factor

Nb+c
Kl=1+46y(-———— 2.3.7
kl + kl < Na + 2b > ( )
For the WDVV equations to hold, we should have
-1 17 _
(FiK Fm)jn — (FmK Fz)jn =0 (2.3.8)
or equivalently
3Nb+c+ N2q
Kinmn, - ijKin - w [Fi, Fm]jn =0 (239)
We will first calculate the commutator
[Fia Fm} = [CLU + ‘/ia aU + Vm] (2310)
We find
(UVi) g = 2b+ 01 (1 — 01) (N + ¢) (2.3.11)

and since&/” = U andV,L = V,, we also knowV,,U = (UV,,)*. Furthermore, if we use
the identity

BijBik + BijBrj + BirlBix =1 (2.3.12)
we find
Vi Vinljn = 0 (1= Gmn) (1 = 8in) (6* = 1) + bpmn (1 = 85 ) (1 = 035) (b° = 1)
= Gjm(1 = Gmn) (1 = 8i) (b7 = 1) = 8in (1 = 6m) (1 = 6i5) (0° — 1)
+ 5ij5mn(ﬁ + 2(b2 - 1)) - 5jm6in(ﬁ + 2(b2 - 1)) (2313)

and therefore

[Fi7 Fm]jn = 6ij(1 - 6mn)(1 - 5in)a + 6mn(1 - 6jm)(1 - 5@‘)0(-
djm (L = Omn) (1 = din)a — Gin (1 = Gjm ) (1 — di5)a+

where

a=b>—-1—ac— Nab
B =N + Nb + 2bc (2.3.15)

On the other hand, we have

KijKmn — KimjKin = (Na+2b)? [ 5;;(1 — 6mn) (1 — 6in)y+
Omn (1 — 53'771)(1 - 5ij)'7 - 5jm(1 = Omn) (1 = Gin )y

— 8in(1 = 6jm) (1 = 8i5)Y + 0i0mn (6 — 27) — 8jmbin(6 — 27)| (2.3.16)
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where

~ Nb+c 5=

_ore 23.17
7T Na+2 ( )

The equation (2.3.9) therefore reduces to two algebraic relations among the paratigters
These relations are

3Nb+c+ N2a )
T Nagop At Wat20)7y=0 (2.3.18)
and
3Nb+c+ N2a )
——Nagz 2a—B)+(Na+2h)*(2y-8)=0 (2.3.19)

which combine into only one relation
Nb® +3b%c —ac®> +3Nb+c¢+ N?a =0 (2.3.20)

This finishes the proof of theorem 2.4 for the generic case where Néth- ¢ # 0 and
Na+2b#0.
There are special situations for eith€n + 26 = 0 or Nb + ¢ = 0 or both. If Na + 2b = 0
andNb + ¢ # 0 then we find that the WDVV equations hold if and only if

[Fi, Frnl =0 (2.3.21)

and therefore if and only if

and

Na\?
20— f=—(N-2) (1 + (7> —ac) =0 (2.3.22)

Note that just substituting = — 2} in (2.3.20) gives

2
(N%a — 2c) (1 + (%) - ac> =0 (2.3.23)

which is only partially correct sinc&?a — 2¢ = 0 does not yield a solution.

Furthermore, ifNb 4+ ¢ = 0 and Na + 2b # 0, then (2.3.6) shows thdt becomes singular.
Experience tells us that fa¥ # 3 there exist no solutions to the WDVV equations without
the extra requiremerit = +1. For N = 3 there is no such condition dnand the WDVV
equations are satisfied. We will now consider 1 andb = —1 separately. Ih = 1 then we
chose a new nonsingul&f equal to

K=Y hF;=> |-2+a(N-1)* +a) e | F, (2.3.24)

j=1 j=1 i#]

N
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and working this out we find tha equals up to a factor

N
(Ta + b) I (2.3.25)
which is a nonzero multiple of the identity sindéz + 2b # 0. If b = —1 on the other hand,
we take
N N
K=Y hiFy=> [[[@-aN-1)e** +ad [[e* | F;  (23.26)
j=1 J=1 \k#j k#j ik

which also leads té& being a multiple of the identity. So in both cases we must solve (2.3.21)
again, which leads to

Na+2b=0 (2.3.27)

which is precisely what we excluded before.

Finally, if we take bothVa + 20 = 0 and Nb + ¢ = 0 then all linear combinations of thg;
become singular and the WDVV equations are meaningless.

Summarizing, we conclude thatifa + 20 = 0 and Nb + ¢ # 0 there are solutions if and
only if

N 2
14 (;) —ac=0 (2.3.28)

and if Nb + ¢ = 0 and Na + 2b # 0 there are solutions if and only iV = 3 and finally
if both Na + 2b = 0 and Nb + ¢ = 0 then there are no solutions at all. This finishes the
discussion of theorem 2.4. O

2312 The type A prepotential
Let us now turn to a prepotential with physical background. We consider the function

- N+1
F((L’h ‘..71'N+1) = Z f5(l’l — x]-) + T Z TiTjTk (2329)
1<i<j<N+1 1<i<j<k<N+1

which is of the form (2.3.3) with parametetsb, ¢ given by

N+1 N+1
P e A (2.3.30)
2 2
The SU(N + 1) perturbative prepotential is obtained frafhby the linear® change of vari-
ables
a; = Tj— TN+1 iZl,...,N
aN+1 = X1+ ...+TN41 (2331)

3 The WDVV equations are invariant under linear coordinate changes
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and the substitutiony 11 = 0. Concretely it is given by

F(al,...,aN)z Z f5(ai +Zf5 CLI N—|—1 <Zaz> —

1<i<j<N
N N N
1 N+1
§<§ ai> > a? +T+§ @} (2.3.32)
i=1 j=1 i=1

This is of the general type (2.3.3) with parameters

a_=1 | a;r =0 =1 ‘

a= 2= | b=—1 C:N+1‘

N+1

It turns out that the sign of the correction term in (2.3.29) is irrelevant for the WDVV equa-
tions.

We can confirm the result in [47] and prove

Theorem 2.5. The function

N 3

1<i<j<N

N N N
% <Z ai) Sa2 |+ % S a? (2.3.33)
=1

j=1 i=1
satisfies the WDVV system (1.2.2).

Remark 2.6. We note that (2.3.33) is invariant under the Weyl groupigf. In fact, taking
arbitrary values fora, b, ¢ this is still the case. A natural question is therefore whetheFan
with a_ = 1, ax = 0 andn = 1 satisfies the WDVV system for any other values, 6fc.
Calculations for ranks up to five suggest that there are no other solutions. In particular, the
naive prepotential withu, b,c = 0 coming from quantum field theory does not satisfy the
WDVV system. This should mean that the string theory correctionpra@selythe ones
needed to satisfy the WDVV equations.

Proof. Takinga_ = 1,y = 0,7 = 1 anda, b, ¢ arbitrary F' has third order derivatives
equal to

Frim = a + 0k101m My, + 01 8mi + SkmBik + Oim Bt (2.3.34)
where

My = > Brg+ B

qF#k
Br = mncoth(ag) +(4—N)b+c
0 if =
By = (2.3.35)
a_ coth(a; — a;) + ag coth(a; +a;) +b if i#j
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Chapter 2 Perturbative prepotentials as explicit solutions

Consider a linear combinatiafi of the following form

1
Ky = 0 — 2.3.
Kkl = Okt A (2.3.36)

whereA,; depends on the specific prepotential under consideration and will be specified later.
We find

N

(FKT'Fa) = Y FigrArFum
k=1

= fim (Aiﬂjiﬁm + 65 Bim AiM; + 0318 AiM; + 5ij5lmAiMiMm)
81(1 = 61m ) A Bij Brmy

6jl5lmAliﬁim

0501 A M B

Oit(1 = 6 ) Ai Bji Brmi

+ G (1= 04y) <Aiﬁjzﬂim + A;Bi;i Bim + aAm My, + GZ Akﬂkm)

%
+  0jm (L —0i)A;Bi; B

+  0i(1 — Oim) <Alﬁliﬁmz + ApBmifimaAiM; + a Z Akﬂki)
2
+ 5ij61m (AzMzﬂzm + A My, B + Z A BrmBri + @Ay, My,
k#i,m
+a Y AiBrm +aAiM; +ay Akﬁki)
k k

+ 5j7716il (Am i2m, + Alﬁ?ﬂl)

+ @ A+ a(AiBi + AiBy) + alAwBim + AiBr)  (2.3.37)
k

Here it should be noted that the last line contributes to all the previous ones. For example, if
i=lLi#m,i#jj#m then(FiK‘lFm)jl is not

AjBijBmi (2.3.38)
but rather

A;BijPmi + 0> Y Ax + a(A;Bij + AiBji) + a(AmBim + Aiffmi)  (2.3.39)
k

In order to satisfy the WDVV system we should check whether or not (2.3.37) is symmetric

in i andm. For example, the first two lines are automatically preserved under the interchange
of ¢ andm. The third and fourth lines on the other hand are mutually exchanged. The rest of
condition (1.2.2) is nontrivial and depends on the details of the fundfion
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The two cases = + %7 , b= F1,c= (N + 1) have to be treated separately.

Thecase a=—27.,b=1,c=—-(N+1):

For this case, we take a specific linear combinafior-  _; h; I; where

N
hj =€ 4+ e (2.3.40)
i=1
and we find up to a factor
Kpy=96 ! =9 1 (2.3.41)
W= Ok T m2ay ) T ORI 3.
Using this information we can derive the following identities
2 2
A+ Ay = 2— 5 — = (2.3.42)
AiBi; + AjByi 2 (2.3.43)
4
AiBjiBim + A BiiBim — AmBimBim = Zan (2.3.44)

Turning to the WDVV condition we find that the first two lines of (2.3.37) are preserved under
the interchange of andm and that the third and fourth lines become mutually exchanged.
We will now study the fifth and sixth lines. Keeping in mind that the last line of (2.3.37)

contributes to both of these, we find that the fifth line becomes

Sa(1 = Gim) (Aj@-jﬂmj +a® ) A+ a(A;8i; + AiBji) + a (AmBim + Alﬂm»)
k
and the sixth becomes
Sim (1 — 035) (Aiﬁjiﬁim + A;BijBjm + a* Z Ar+
k

a(A;B: + AiBji) +a Z A Bim + aAm,Mm,>
%

Using the definition of\/,,, and the relations (2.3.42), (2.3.43) and (2.3.44) we see that these
are indeed exchanged under the interchangeafd m. The seventh and eighth lines of
(2.3.37) are mutually exchanged for the same reasons, which leaves us with the ninth and
tenth lines. The complete ninth line becomes

8i301m (AiMi@-m + A M Bni + Y AkBrmBri + aAm Mo+
k#i,m

a Z Akﬂkm, + aA?,Mz +a Z Ak‘/Bkl + a2 Z Ak) (2345)
k k k
and the tenth line is

k
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Using the definition of\/,,, and working out (2.3.45) we find

84301m ( > (AkBiBim + Am Bk Bmi + AkBrmBri) + AiBiy+
k#i,m

k#m

A B + 0> (AiBixArBri) + adifi +a® > Ak> (2.3.47)
ki k

We will make use of (2.3.43) and the following relations

AiBiBim + AmBmBmi 8 —4N (2.3.49)

and we find that the ninth line becomes

8301 (Aiﬁfm + A2+ 4a(N = 1) + a (Ao + Aiff;) + a2y Ak> (2.3.50)
k

Using (2.3.43) again we find that the tenth line becomes

4a 4a

5jm5il (Amgizm + AZﬂ?nL +4a — 24,  2a + a2 Z Ak) (2351)

e k2 e m k

and using the relations
2 2 2 2 4 4
Al + AmBii — AmBiy — Ailii = 2ar + Sanm (2.3.52)
2N -2 2N -2

8 —4N + o2, + % = ApnBm + AifB; (2.3.53)

we find that the ninth and tenth lines are indeed exchanged under the interchargel of.
Therefore the prepotential (2.3.33) satisfies the WDVV equations and we have proven half of
theorem 2.5.

The case a = b=-1,c=(N+1):

2
N+1 ¢
In this case, taking

N
hj =€ 4+ e (2.3.54)
i=1
we find that up to a factok” =}, h; F; equals

1 1
Okl (ﬁ) = 01— (2.3.55)
—e k
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So with respect to the previous case there are modifications in the definitighs @f; and
Aj. This causes the relations (2.3.42), (2.3.43), (2.3.44), (2.3.48), (2.3.49), (2.3.52) and
(2.3.53) to be changed to the following ones

AjBij+ AiBji = —2+42e*% + 2%
AiBi; + A3y = -2
AifBjiBim + A BiiBim — AmBimBim = 4e2am
AiBikBim + AmBmkBmi + AkBrmbri = 4
AiBiBim + AmBmBmi = AN —8

AiB + AmBii — Aoy — AiBiy; 4e%% 4 4e2m
A + Aiffi = 4N —8—
(2N — 2)e?% — (2N — 2)e?m

and using these relations we find that the WDVV equations are again satisfied. This proves
theorem 2.5. 0

2.3.1.3 Other classical Lie algebras

Next we consider a prepotential inspired by other classical Lie algebras. Without correction
terms, theB, D prepotentials are both givenby. = 1, ;. = 1 and byn = 1, 0 respectively.
Leaving the parameterunfixed, we can prove the following theorem

Theorem 2.7. The function

N

F(ay,....,an) = Z <f5(ai —aj) + fs(a; + aj)>+772f5(ai) (2.3.56)

1<i<j<N i=1
satisfies the WDVV equations (1.2.2) if and only # —2(N — 2).

Remark 2.8. This solution seems to have little to do with tBeD Lie algebras, sincey

must take on a fixed special value different frorand 1. One can think about restoring the

Lie algebraic interpretation by adding third order correction terms. It is conceivable that
their contribution gives enough freedom to takequal to0 or 1. But the Lie algebras under
consideration do not possess any third order Weyl invariant polynomials and therefore the
correction terms would automatically spoil Weyl invariance and any Lie algebraic interpre-
tation with it. Fourth (or higher) order correction terms should therefore be used which give
nonconstant additions to the third order derivativesigfwhich is beyond the scope of this
thesis.

As an alternative, we can introduce an extra auxiliary variable which can be multiplied by
the secondorder Weyl invariant polynomial that all simple Lie algebras have. The success
of this approach is remarkable and will be discussed in detail in section 2.3.2. For the sake
of completion we mention that calculations for low ranks indicate that adding third order
correction terms with parameters, b, c indeed doesn'’t help: the WDVV equations always
forcea =b=c=0.
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Proof. The first part of the proof is identical to the first part of the proof of theorem 2.5. The
third order derivatives are given by (2.3.34) with

My = ) Brg+ B

a7k
Br = ncoth(ag)
0 if i=j
ﬁij = .
coth(a; — a;) + coth(a; + a;) if i#£j
a =b = ¢ =0 (2.3.57)
One can derive the following relations
BjiBim + BijBim — BimBim = 0 (2.3.58)
which are identities that we will need later. Furthermore, we take
N
K =Y sinh(2a;)Fju (2.3.61)
j=1

and using (2.3.58) we find

N
Ky = i (1 — N+ ZCOShQ(CLj) + % (2(N —2)+n) coshQ(ak)) (2.3.62)

j=1

This becomes independentiofind! precisely for; = —2(N — 2). So for this value of) we
can regardX as a multiple of the identity. First let us consider all other values, & that
K is equal to (2.3.36) with

_ 1 _ 1
C1-N+ > cosh®(a;) + 1(2(N-2)+n) cosh®(ay) X +Yi

Ay, (2.3.63)

In order to satisfy the WDVV equations, the expression (2.3.37) should be symmétaindn
m. Just as in the previous section, the first nontrivial condition is that the fifth and sixth lines
of (2.3.37) are exchanged under the interchangeaoidm. This condition translates into

AiBiBim + A BijBim — AmBjmBim =0 (2.3.64)
and therefore
(X + YJ)(X + Ym)ﬂjiﬂim + (X + YL)(X + Ym)ﬂijﬁjm_
(X +Yi)(X +Y;)BjmbBim =0 (2.3.65)
Working this out further we find

(et — 1)(et — (2N —2) + ) _
_1_6 e2(a,;+a_,») -

0 (2.3.66)
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Therefore we find that fon # —2(N — 2) the WDVV equations are not satisfied. We will
now determine what happens for the value: —2(N — 2), for which K becomes a multiple
of the identity. Then (2.3.37) becomes

Z FijkFoim = Oim (ﬂjzﬂlm + 855 Bim M; + 05185 M; + 5ij61mMiMm>

+ 651(L = 01m)Bij Bmj
+ 00 M Bim
+  0ij0uMiBmi
+ 0y(1— jm)ﬂjiﬁmi
+ Oim (1 = 8i5) (BjiBim + BijBim)
+ Ojm (1 = 04)Bis By
+ 6i5(1 = bim) (BiiBrt + BrmiBim)
+  0ij0im (Mzﬂim + M Bmi + Z ﬁkmﬁki)
kAi,m
+  Simbi (Bim + Boni) (2.3.67)

The seventh and eighth lines are exchanged under the interchangaafn for the same
reasons as the fifth and sixth lines. Therefore it remains to check that the ninth and tenth lines
are exchanged. To do this, we use (2.3.59) and (2.3.60) and find

k#i,m

> (BikBim + Bk Bmi + BrmBri) + Bom + Bons + 1(BiBim + B Brmi) =

k#i,m

N A+, 4B =0, + 82 +2(2(N —2)+1) (2.3.68)
k#i,m

So for the special valug = —2(N — 2) we can conclude thaf' satisfies the generalized
WDVYV system. This finishes the proof of theorem 2.7. O

2314 An additional result

Here we mention a result which should be compared with theorem 2.4. It was obtained in the
process of proving the main results of this section

Theorem 2.9. The function (2.3.3) witth_ = 0, ay = 1, n = 0 and base functiory,
instead off; satisfies the WDVV equations (1.2.2) if and only if

Nb3 + 3b%c —ac® =0 (2.3.69)

Therefore adding Weyl invariant cubic terms
R 8 b (X N c XN
z . Z . 2 et 3 2.3.7
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to the four-dimensional type A prepotential leads only to a solution of the generalized WDVV
system if the condition (2.3.69) holds.

Proof. We will prove theorem 2.9 by adapting the proof of theorem 2.4. We find fhaf,, ]
is of the same form as (2.3.14) but with

a = —b>—ac— Nab

B = Nb*+2bc (2.3.71)

and we find precisely the sani€;; K., — Kp,; K, as in (2.3.16). ForV # 2 this again
leads to a single relation, namely

Nb3 + 3b%c — ac®> =0 (2.3.72)

which is to be compared with (2.3.20). This finishes the proof of theorem 2.9. O

Adding an extra variable

We take the perturbative prepotential (2.1.4) with base function (2.1.6) and add an additional
variableay. We have the following result

Theorem 2.10. [50] For any root systenk on a spacé/ with the standard Euclidean basis
{e1,...,en}, the following functior#”'

F(ag,...,an) = % Z f5((a,a)) +7Ea8 + %ao(a,a)] (2.3.73)
acR

satisfies the WDVV system (1.2.2) for a particular valuey afhich depends on the root
system.

Since they turn out to be imaginary, the prepotentials no longer satisfy the property that
substituting real variables, leads to a real value of. To restore this property one can
change the variables, to ia;, and the functiorys to

1

fs(z) = 6(m)3 - iLig(e’M) (2.3.74)

This f5 is also used in the literature, see e.g. [53].

Remark 2.11. We can think ofag, a) as an element of an extension of the root spRce
Rey & R where we have introduced an additional basis veetprWith respect to the basis
{eo, ...,en } we can define a flat metric oR by means of the inner produtt;, e;) = d;;,
thus trivially extending the Euclidean metric éh The matrix of third order derivatives)
naturally receives the interpretation as this metric. In fact, the variailplays the role of a
special variable and the functiof(ay, ..., ax ) satisfies theriginal WDVV system (1.1.2).

Proof. We will use the matrixk’ = Fj which obviously equals a multiple of the identity.
Therefore the WDVV condition (1.2.2) reduces to

EF,F,, — F,F; =0 (2.3.75)
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which are automatically satisfied whenevet 0 orm = 0. Restricting ourselves tom # 0
the condition becomes

N
(Fiijkmn - Fnij:Fkin) + 72 (5ij67nn - 6i7L5j ) =0 (2376)
k=1

where all indices run fronl to N. We remind the reader that the first of these two terms
(but with base functiory,) also appears in the proof of the WDVV equations in the four-
dimensional context, see (2.2.9). There we proved that this first term equals zero by using
the Dunkl identity (2.2.12) corresponding f@. In the present five-dimensional situation we

will use a similar Dunkl identity51] associated witlfs:

> B (@a)f(Ba)= > Bla,p) (2.3.77)
003 =W 0a0p =W

Ol7ﬁ€R+ a,ﬂ€R+

which is valid under the same conditions (2.2.13) and (2.2.14) as before. Since we use the
sameB(«, 3) these conditions are again satisfied.

The underlying idea behind this second Dunkl identity is that) = f;’(z) satisfies the
basic functional relation

g(x) +g9(y) |g9(x+y) + 9(z) —g(y)|g(x —y) =0 (2.3.78)

whereagy(z) = f£’(z) satisfies a similar relation

g(x) +9)|g9(x+y) + |g(x) —g(y)|g(x —y) =2 (2.3.79)

Just like we did in the four-dimensional situation we use the antisymmetyyaimd» and
restrict to positive roots. Taking the sum again over all roots the condition (2.3.76) becomes

i S Y (@8) [iBm— amBi] [aiBn— anfi] = =297 (8ij0mn— Sindjm) (2.3.80)
weWaaaﬁ —w

a,B€ER

We want to evaluate the left hand side. First we introduce the homogeneous 4+ioym

%A(w,y;uw) =
> (@ B) (e, 2)(8,y) — (a,y)(8,2)] (e, ) (B,0) — (a,0)(B,u)] (2.3.81)

a,BER

which is antisymmetric inc, y and inu,v. Moreover it is invariant under the Weyl group
W and under permutation af, y by v, v. Consequently a small calculation shows that we
necessarily have

Az, g3 u,0) = e (2,u)(y,v) = (2,0)(y, u)) (2.3.82)
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An By Cn Dy Es E; Eg F,

VN +2i | /22N = 3)i | /AN +2)i | /AN —2)i | V3i | V48i | /160i | V/15i

2(N+2) | 4(2N -3) 8(N +2) 8(N-2) | 6 | 96 | 320 | 30

2.4

Table 2.1: The numbers; andc featuring in theorem 2.10 and its proof.

for some fixed constant With respect to the Euclidean coordinatgs. . ., e, this means
that the expression (2.3.80) equals

& (6Lj 5mn - 6in5jm)

Hence the WDVV condition reduces to= —2+2. The precise values efare evaluated with
the help of appendix of Bourbaki [8] and they are listed in table 2.1. O

Energy scale and compactification radius as new variables

In this section we will see that there are natural parameters which can serve as extra variables
for the four-dimensional as well as the five-dimensional prepotentials: in four dimensions it

is the energy scale, in five dimensions a compactification radius. At first sight, there appear
to be great advantages to this point of view: in four dimensions it has been suggested [6] that
the energy scale provides an extra varialjen such a way thaf'(aq, ..., an) satisfies the
original WDVV system. This makes it very attractive to introduce an extra variable there. In
five dimensions on the other hand we have seen in the previous section thaedan extra
variable. To have a natural parameter play the role of this new variable, which we introduced
by hand, is a very tempting idea. However, we will see that both in four as well as in five
dimensions these ideas do not work.

We have already mentioned that in the four-dimensional situation, the perturbative prepoten-
tial (2.1.4) is the zero order term in theexpansion of the full prepotential. More correctly,

the prepotential doesn’t have a power series expansign $ince it contains &og(u) term.

This term however does not contribute to the WDVV equations since it is multiplied by a
second order polynomial in thevariables. To be specific, the perturbative prepotential for a
root systemR including thislog(:) term is given by

F(ai,...,an) = % Z(oz,a)2 log (M) (2.4.1)

aER H

Giving degreel to botha and . we find thatF' is homogeneous of degr@e This can be
expressed by means of Euler operators in the following way

F=2F (2.4.2)

0 0
Ma—u + zl: aia—ai
The second order derivatives Bfhave degree zero, so we find that

0
Bijk = M@ij ==Y aiFjr=—Kj (2.4.3)
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where K, is the linear combination of third order derivatives Bfthat we used to prove

the WDVV equations. Thg;, are physically very important objects called beta functions.

For perturbative prepotentials they are the semiclassical coupling constants, whereas for the
full prepotentials discussed in chapter 3 they determine the energy scale dependance of the
coupling constants. Not only do we see that the naturally emerge in the proof of the
WDVV equations, but moreover we find that by introducting a new variaple- — log(u)

we can writek ;;, as

Kjr = Fojk (2.4.9)

which is similar to the five-dimensional situation. The question now arises whether or not
the WDVV equations still hold if we regarg, as an extra variable on equal footing with the
othera;.

Proposition 2.12. The function
1
F(ag, ...an) = 5 ) (@) log((ev,a) + a0 Y _ (@, 0)* (2.4.5)
aER a€ER
does not satisfy the WDVV equations (1.2.2) for any root sy&tem

Proof. Due to the dependence &f on ay none of the matriceg}, nor any of their linear
combinations is invertible. O

Trying to repair this, one can tryy, = p as a new variable instead. The result however is
equally disappointing.
Proposition 2.13. The function
1 2 2
F(ag,...,an) = 3 Z(a,a) log((a,a)) — log(agp) Z(a,a) (2.4.6)

a€ER acR

does not satisfy the WDVV equations (1.2.2) for any root sy&em

Proof. Due to equation (2.4.2) we find that

1 N
(Eor = =0 > ai (), (2.4.7)
=1

so the zeroeth row of; can be expressed as a linear combination of the other rows.and
therefore none of thé&; nor their linear combinations are invertible. O

We have found that adding as a new variable to the perturbative prepotential does not lead
to new solutions to the WDVV equations. Since the full prepotential is also homogeneous
of degree2, the addition ofu doesn't give any solutions to the WDVV system there as well.
This seems to contradict the findings in [6].

Let us now turn to the five-dimensional perturbative prepotentials. They are obtained by
compactifying the fifth dimension of the theory and the dependence on the compactification
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radiusR (not to be confused with the root system, also denote®)owas suppressed so far.
Including i}, the prepotentials become [56]

F(ay,..,an) = > f5((o,a)) (2.4.8)
a€ER
with
fs = %x?’ — %mug(e—m) (2.4.9)

which reduces to (2.3.1) faR = 1. Regarding the compactification radiisas a new vari-
ablea, does not lead to the sanféas in equation (2.3.73) in section 2.3.2. So even though

it is tempting to believe that the extra variable that so naturally solves the problems in five-
dimensional gauge theories is the compactification radius, this is in fact not true. Moreover,
explicit computations on the typB prepotential have shown that (2.4.8) is not a solution to
the WDVV equations.

4 Restoring the role of the compactification radius alters the analysis of section 2.3.2 only slightly:
~ should be replaced by R-~.
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Chapter 3

In this chapter we introduce the nonperturbative four-dimensional Seiberg-
Witten prepotentials. Since their definition for a general simple Lie algebra is
rather complex, we have chosen to first work out in section 3.1.1 the simplest
example of Lie algebrd », which has the advantage of giving all the essential
ingredients without going into numerous technicalities. The rest of section 3.1
deals with the main ingredients for the prepotentials for the other simple Lie
algebras, which are subsequently defined in section 3.2.

Section 3.3 contains the proof of the important result that the nonperturbative
prepotentials satisfy the generalized WDVV equations. The family of associa-
tive, commutative algebras (1.2.5) is identified and the relation (1.2.3) between
its structure constants and the prepotential is shown to exist using two different
methods.

Finally, in section 3.4 we show that in a certain limit the four-dimensional
nonperturbative prepotential for typé, Lie algebra goes to its perturbative
counterpart. This establishes the link between the present and the previous
chapter, as promised in section 2.1.

The Seiberg-Witten data

The full nonperturbative prepotentials originally arose as the solutioxf te 2 supersym-
metric Yang-Mills theory, also called Seiberg-Witten theory [59]. Although this physical
context is essential for a full understanding of the prepotentials, it would take too much time
to expose it here in full detail. For reviews on the subject, see for example [3, 7, 15].

On the other hand, the prepotentials can be described in the framework of an integrable sys-
tem called the periodic Toda chain [22], [48]. We will assume that the reader has some
knowledge of integrable dynamical systems, and we use the Toda chain context as the back-
ground and motivation for answering certain questions which are relevant in the construction
of the prepotentials.

Apart from context, the prepotentials can be defined in purely mathematical terms with the
help of the theories of Lie algebras and Riemann surfaces. Again we assume that the reader
has a basic knowledge of both these theories. Restricting ourselves to this purely mathemati-
cal definition of the prepotential for a simple Lie algelgtahe three main ingredients in the
construction are the following:

e The first ingredient is a family of Riemann surfaces corresponding to a set of affine
curves

e = {(z,2) € C*| P(z,2,u1,...,un) = 0} (3.1.1)

where theu; serve as complex moduli parametei§;s the rank ofg and a Riemann
surface inX; has genug > V.
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e The second ingredient is a special meromorphic differeniial on:, which is called
the Seiberg-Witten differential. Its special property is that the derivatives; gf with
respect to the moduli are holomorphic differentialsXn

e The third ingredient is a choice @V independent cycles oi, out of a total2g. If
we choose a canonical bagid;, B;} of the first homology group, the choice consists
of N cycles of typed and N cycles of typeB in such a way that the restriction of the
intersection form to this subset is nondegenerates B; = ¢;;.

Once these ingredients are introduced, we define the prepotential in terms of period integrals
of Agyw over the chose N cycles. Since varying the moduli will influence the period
integrals, the (locally defined) prepotential is a function on moduli space.

A simple example: type A Lie algebra

Since the Seiberg-Witten data and the construction of the prepotential is complicated and
technical for general simple Lie algebras, we give the example of Lie algebrad y here
separately. As mentioned above, there are three main ingredients in the Seiberg-Witten data:
a family of spectral curves, a special meromorphic differential on it and a 28¥ afycles.

The family of curves

A Riemann surface can be looked upon in various ways. Due to the Lie algebraic nature of
our setup, we will often consider it as an algebraic curvP On the other hand, we need

the realization of the Riemann surface in terms of a complex manifold in order to study the

holomorphic differentials on it. We will use the usual relation between these two realizations,

see for example [10], [35].

Often we will give a Riemann surface in terms of an affine cutviem C? defined through a
polynomial P as
C ={(z,y) € C*| P(z,y) =0} (3.1.2)
The corresponding algebraic curveR4d is given by adding the appropriate points at infinity.
In terms of affine curves, a family of Riemann surfagess by definition
Y= {(x,y) € CQ| P(z,y,u1y...,un) = 0} (3.1.3)

where for generic values of the complex parametars.., uy the genus of the curvE is

fixed to some numbey. For special values however, the genus may decrease. Denoting by
M the manifoldCY — A with the special values of the; removed, we can look upon the
family as a fibration of Riemann surfaces ovet. The spaceM is called the moduli space

of the family and they; are called the moduli.

Returning to the specific example under consideration, the family of Riemann suffages
is given by

Say = {(x,y) € C?| P(z,y,ui) =y = W(a,u)? +4=0}  (3.1.4)
Wi(x,u;) = 2V N+ L unoiz+un (3.1.5)
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Remark 3.1. The fact thai? can be identified with the Landau-Ginzburg superpotential of
type A, or equivalently with a deformation of the typey singularity, is not restricted to
the typeA case. We will see in section 3.3.2 that the polynomialefining the families of
curves for the othed DFE Lie algebras can also be used to construct a one-variable version
of a Landau-Ginzburg superpotential. For the ndiD E Lie algebras the curves are more
complicated and there is no direct relation with the corresponding singularities.

The curves in the family (3.1.4) are hyperelliptic, which makes their investigation relatively
simple. Moreover, as a matter of fortunate coincidence in the fypease the rankv of the

Lie algebra equals the genyof the curves and these are the main reasons why it serves as
the simplest example.

3.1.1.2 The moduli space and its K ahler metric

To get an idea of the structure of the moduli spade we mention that for all Lie algebras
M is known to be a Khlef manifold with Kahler metric defined in terms of the prepotential.
If we denote the prepotential, which we will introduce later. Bt , ..., ax ) then the metric

is given in terms of the coordinates by

2

0*F
2 _ A -
(ds)” = ;j Im <8ai6‘aj) da;da; (3.1.6)

This relation is in fact the reason for the name prepotential, serving as the basic building
block for the Kahler potential. In the context of perturbative prepotentials, we saw in section
2.2 that the linear combinatioA™ of third order derivatives ofF appearing in the WDVV
equations could be identified with a natural metric: the Killing form on the root space of the
Lie algebra. We want to know if the &hler metric can play a similar role, i.e. if there exist
parametersy;, such that

> apFijr = Im(F;) (3.1.7)
k

Even though the parametetig are allowed to depend an, a;, it still seems unlikely that
they can link the holomorphic third order derivatives/to the imaginary part of the second
order derivatives. It is therefore very unlikely that thal{er metric can fulfill a similar role
as the Euclidean metric in the perturbative case.

3.1.1.3 The Seiberg-Witten differential and its derivatives

Moving on to the second ingredient in the constructiorfotthe Seiberg-Witten differential
Asw is given by

Asw = log(y + W)dx — log(2)dz (3.1.8)

1 In fact, manifolds with K&hler metric of the form (3.1.6) are known as rigid special Kéhler manifolds
[13].
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The special property ofgyy is that its derivatives with respect to the moduli are all holomor-
phic. We will first explain what it means to differentiate (see [44]).

We can regard the equatid?(z, y, v) = 0 as defining implicitly the functioy(x, ux). The
derivative ofy with respect to the moduli gives
oy _ Py

6uk o Py

(3.1.9)

whereP,, = g—lf;. Usingz as a local coordinate on the Riemann surface, we can extend this
differentiation to differential forms) = ¢da by

B) (06 9y
o, (pdz) = ( ou, %y 8ui> dx (3.1.10)

Alternatively, we can usg as a local coordinate and regafd= 0 as implicitly defining
z(y,u;). We can calculate the derivative of = —¢%dy again and see if we get the same
answer as in (3.1.10). In general this is the case Lonly up to total differential forms [44] so
that taking a derivative of differential forms with respect to the moduli is unique only in
cohomology.

Now we come back to the derivatives &§y-, which we will show to be cohomologous to
a set of linearly independent holomorphic differentials. Usings a local coordinate, the
derivatives of\ gy are

(3.1.11)

Nsw 10 1 <W+1)6W pda

= — W)dz = — —dz =N
Oug y+W6uk(y+ ) dz y+W \y 6uk$ o

and it is well-known that these give a basis of the holomorphic differentials of the hyperellip-
tic Riemann surfaces in the famiy 4 ,, .

3.114 The special cycles

For a generic simple Lie algebra the rank is smaller than the genus of the family of curves
and a selection 02N of the 2¢g cycles has to be made. For typey no such selection is
necessary, and therefore we can immediately proceed to define the prepotential.

3.115 The prepotential for type A Lie algebra
We define the period integrals afy, over a set of canonical cycles of the curve
o :7{ st (3.1.12)
A

1

Thea,; are moduli dependent and we can use their definition as a local change of variables on
the moduli space. The Jacobian of this transformation is nonzero since

6ai o a)\sw
an N A; (9’&]'

(3.1.13)
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and a matrix built from the integrals of all holomorphic differentials overAltycles is
always nondegenerate. Here we have pulled differentiation with respect to moduli through
the integration sign. The justification for this is that the integral does not depend on the
particular cycleA; but only on its homology class. This allows to choose a representative of
this class which encircles the branch cuts widely, so that changing the position of a branch
point slightly doesn’t change the cycle. This in turn allows to differentiate with respect to the
moduli under the integration sign.

We can now define the derivatives b§y, with respect to the variables by using the chain
rule and we find that thégg—_w form a canonical set of holomorphic differential forms since

8)\SW 8aj
= =04 3.1.14
Aj aai 8&1‘ J ( )

We introduce the integrals ofsy over theB cycles

b; = 7{ Asw (3.1.15)
Bj
Differentiating theb; with respect to the moduli we find
0b; OAsw
= =1II; 3.1.16
8Cli Bj 8&,‘ J ( )

wherell,; is the period matrix of the Riemann surface, which according to Riemann’s bilinear
relations is symmetric. Therefore we can (locally) integratebthend obtain
_OF

b, = —/
J 6aj

(3.1.17)

and the locally defined functioft (a4, ..., ay ) is called the prepotential.

Definition 3.2. Associated to the typdy Lie algebra, we define the family of curvEs
by (3.1.4) and a meromorphic differentiaky, by (3.1.8). The prepotentidh(ay, ..., an) IS
defined locally on the moduli spagel by

a; = f)\sw
A;

b, f Asw = g—f (3.1.18)
Bj aj

Different choices ofd and B cycles give different prepotentials, which we will put in one
equivalence class for reasons described in the next subsection.

3.116 The effect of a particular choice of cycles

The fact thatF cannot be extended to a global function on the moduli space was known
already to Seiberg and Witten [59] for the simplest casd ofinstead ofF being a function

on M, we have thata;, b;) is a section of a flat bundle ove¥t with structure grougd’ C

C® Sp(2N,Z) x U(1).
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Let us elaborate on this flat bundle. Since the moduli spetes constructed as a subman-
ifold of C¥, it will in general have a nontrivial fundamental group. One can circle along
the nontrivial homotopy elements and pick up a monodromy on the cycles of the Riemann
surface. Typically, the homology element encircles a gap of complex codimension one in
C" in which one or more cycles of the Riemann surface get pinched. The monodromy is
given by the Picard-Lefschetz theorem, which prescribes that the effect of a pinched cycle
on another cycl€ is

(= ¢+ (Cod)d

whereo denotes the intersection of the two. A small calculation shows that under these trans-
formations a canonical homology basis remains canonical, in other words the monodromy
operator is symplectic.

Together with the transformation oy, which may undergo a change in phase, this in turn
induces a monodromy on the flat bundle sending) to some(a, b). The structure group of

the bundle is therefore up to a phase generated by the monodromies, one for every nontrivial
first homology element oM. Since the monodromies are symplectic, the structure group is

a subgroup o ® Sp(2N,Z) x U(1).

The matrix of transformed variables
db;
oa;

is again symmetric and can be integrated locally to a new funoﬁ(fn, ..,ay). This leads

to different functionsF locally for each patch of\. In the physics literature, a lot of ef-

fort is spent on determining the precise cycles for each patch. Our point of view however
concerns only the WDVV equations. Since we know from section 1.2.4 that both the sym-
plectic group and the change of phase are symmetries of the WDVV equations, we are not
so much interested in the particular local functicfisince they will all be solutions to the
WDVV equations. Therefore we will put all choices (and all resulting prepotentials) in one
equivalence class.

Preliminaries: the periodic Toda chain and spectral curves

Consider a finite-dimensional dynamical system with enough preserved quantities in invo-
lution, so that there exists a canonical transformation to action-angle variables in which the
time development of the system is given by a straight line motion on a torus. The existence
of this so-called Liouville torus is guaranteed [42] if a Lax pair exists, i.e. a pair of square
matricesL, M which depend on the positions and momenta in such a way that the equations
of motion are equivalent to

dL

i [L, M] (3.1.19)
In this case the preserved quantities are given .y, which are time independent due
to the cyclicity properties of the trace. Here it is important thaand M are at least of
dimensionN x N if the phase space has dimensi¥, so that there are enough functionally
independent traces.
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Sometimes, one can construct a Lax pair depending on an auxiliary paramndterany
value of this so-called spectral parameter the pair), M (z) is a Lax pair for the system.
The spectral equation fdi(z)

P(z,z) = det {L(z) — 1] =0 (3.1.20)

is then invariant under the flow. Equation (3.1.20) can be interpreted as the definition of a
family of Riemann surfaces, with the phase space variables playing the role of the moduli.

Since the Jacobian of the Riemann surface is a higher dimensional torus, it is tempting to
suggest that the Liouville torus is the Jacobian®bf Indeed, for the periodic Toda chain
which we will consider shortly this is sometimes the case. In the simplest case of a periodic
Toda chain associated with the affine Lie algebra of tyjpg the Liouville torus is given
precisely by the Jacobian of for a particular Lax pair with spectral parameter [2, 1]. For
other Lie algebras and other Lax pairs however, the genus of the spectral curves becomes too
big and the Jacobian is larger than the Liouville torus. Still, one expects the Liouville torus
to sit inside the Jacobian &f. The problem of finding the Liouville torus as a subvariety of
the Jacobian of a spectral curve is called the Adler-van Moerbeke problem in the literature
[2, 1], and its solution will be important in the definition of the prepotential and the proof
of the WDVV equations. Essentially, the family of Riemann surfaces needed to define the
prepotential will be given by (3.1.20) for the periodic Toda chain with a particular Lax pair,
and the special subset of cycles together Wit generate the Liouville torus inside the
Jacobian.

Let us now turn to the periodic Toda chain, which was shown to be related to Seiberg-Witten
theory in [22],[48]. The analysis of this section will follow closely that of [48]. The periodic
Toda chain is a system that can be associated to any Lie algebvée will need a loop
variablez in order to make contact with Seiberg-Witten theory, leading to the consideration
of the affine Lie algebrag("). In terms of the affine root systeR(!) the Hamiltonian is given

by

1 rankg
[ 2 — 7(&, )
H = Z pi— > el (3.1.21)
1=1 acRM)

whereq = qia1 + ... + gyay is a linear combination of the simple roots. The dimension

of the phase space therefore equals twice the rank of the Lie algebra. For any irreducible
representatiop of g we can construct a Lax pair for the periodic Toda chain, and the matrix

L which appears in the spectral curve is given by

L = p(A)
rankg .
A = Z (dlhl + ce; + fl) + zeg + ;Ofo (3.1.22)

=1
Here thee;, f; are the simple root generatorsgt€orresponding tev; and—c«; respectively.
The h; are the elements of the Cartan subalgebraanid the highest root generator. The
¢;, d; are the so-called Flaschka coordinates on the phase space, obtained frgnp tlie
such a way that a certain product

rankg
= H i (3.1.23)
1=0

63



3.13

Chapter 3 The full Seiberg-Witten prepotentials

is time independent. This parametewill play the role of the energy scale, introduced in the
previous chapter.

The dimension of any (faithful) irreducible representatiois bigger or equal tavV, thus
creating the possibility of existence of enough integrals of motion. FixingctHer the
moment, we find that the powers of traces/ore polynomials in the;. And what's more,
these polynomials are invariant under the Lie algebra. The only functionally independent
invariant polynomials inV variables are thé&’ Casimir invariants, suggesting that the number

of independent integrals of motiqereciselyequals half of the dimension of the phase space.
One can check [48] that in general this is indeed the case.

After these preparations we are now ready to define the Seiberg-Witten data for the other
simple Lie algebras, starting with the family of Riemann surfaces.

The Seiberg-Witten family of Riemann surfaces

Roughly speaking, the family of Riemann surfaégsnecessary for the Seiberg-Witten data

is given by the spectral curve (3.1.20) for the periodic Toda chain, whose Hamiltonian is
defined in terms of the affine Lie algebg&). Due to a physical requirement however, we
should not consider the affine algelyf@ but its dual(g(l))v which is obtained by exchang-

ing long and short roots. For the simply laced algebras, the distinction is absent and we can
continue directly. For the non-simply laced algebl(aé,l))V can be obtained from a simply
laced algebrg by dividing out an automorphism groupof g [33]. In terms of the Dynkin
diagram ofg the automorphism group consists either of reflectiofign(_1, Fs, Dn1) OF
rotations (,), see figure 3.1. The spectral curve (3.1.20) is now given in terms of the roots
of g which are invariant under. For instance, instead of the highest (long) roogofve now
consider the highest (short) root gfnvariant undetr.

Definition 3.3. The family of Seiberg-Witten curves for four-dimensiokak 2 supersym-
metric Yang-Mills theory with gauge grogps given by the spectral curve (3.1.20) associated
with the periodic Toda chain fo@gm)v and the smallest representatipn

Remark 3.4. If Seiberg-Witten theory is to be related to the Toda system, the choice of rep-
resentation (which does not appear in the definition of the Toda system itself) should be
irrelevant. Indeed, we will find that not the spectral curve but the Liouville torus inside its
Jacobian defines the prepotential. The choice of smallest representation is therefore just a
matter of convenience.

Before giving the curves explicitly for each simple Lie algebra, we can already see a lot of
their structure. The Lax operator (3.1.22) can be assigned a natural degree by using the prin-
cipal grading of the Lie algebra [33] and by assigning degte@sh to d;, ¢;, z respectively,
Wherehgv is the dual Coxeter number of the Weyl groupgofThis choice makes the Lax op-
erator . homogeneous of degrde We denote this Lie algebraic degree of an objedty

[¢], . The grading is respected by equation (3.1.20) and since this equation is Weyl invariant
the coefficients oft*2! in P(z,2) are polynomials (of a particular degree) in the Casimir
invariantsuy, of g. Since there aréV = rank(g) invariants, the spectral curve can be viewed

as a family of curves depending on thé moduli u;. Some Lie algebraic data is given in
table 3.1.
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Figure 3.1: The left side contains the affine Dynkin diagrams for simply laced Lie algebras, the right
side shows the twisted affine Dynkin diagrams for non simply laced Lie algebras. These are obtained
by dividing out the automorphism of the Dynkin diagram of the corresponding simply laced algebra.

@=<0—0 ++-0-0=0 Dy,

2 3 2 1 2)

00«00 E
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The affine roots are coloured black and the numbenshich occur in the definition (3.1.23) af are

indicated for each root.

Lie algebrag | (g)¥ hg hy exponents
Ay AY | N+1 | N+1 1,2,..,N
By AR | 2N | 2N -1 1,3,..,2N — 1
Cn DY, 2N | N+1 1,3,..,2N — 1
Dy DY |2N-2|2N-2| 1,3,..,2N -3, N—1
Es EM 12 12 1,4,5,7,8,11
E, EY 18 18 1,5,7,9,11,13,17
Es EM 30 30 | 1,7,11,13,17,19,23,29
F, E? 12 9 1,5,7,11
Gs DY 6 4 1,5

Table 3.1: A list of the Coxeter numbers, dual Coxeter numbers and exponents of the simple Lie

algebras. The degrees of the Casimirs are the exponents +1.
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It is convenient to view the spectral curve as a branched cover of pdere. For generic
values of the moduli and, the Lax operato. = p(A) is the representation of a regular
semisimple elementl of the Lie algebra. This means that a Cartan subalgebra azn

be defined by means of the centralizerIaf Since all Cartan subalgebras are conjugate,
the elementl is conjugate to an elementz) - h = Zf.vzl v;(2)h; in the standard Cartan
subalgebra. The eigenvaluesf p(L(z)) are therefore given by = v(z) - wy, where thevy,
denote the weights of the representation. The spectral curve can now be denoted by

dim p

P(z,z)= [ (@=v(2) wp) =0 (3.1.24)
k=1

If the dimension of the weight space of one of the weighis more than one-dimensional,

we remove all but one factar— v(z) - w. Since the weights form a Weyl invariant subset of

the root space, the spectral curve splits according to their Weyl orbits. Representations with
only one Weyl orbit of weights are called miniscule. If the representation is not miniscule,
we focus on the piece containing the highest weight. While discussing the general scenario,
we will assume that this piece is nonsingélar

We will now discuss the pieces of plumbing that connect the different sheets of the foliation,
starting with the finite values af. For generic values of, we know thatl.(z) is a regular
semisimple element af conjugate tav(z) - h. By using the action of the Weyl group, we
can take Infw) - h to be in the fundamental Weyl chamber. Branch points of the curve occur
for thosez for which %—’; = 0, in other words if two eigenvalues of L) come together. This
happens for example wheriz) - h hits a wall of the fundamental Weyl chamber, i.e. when
v(z) - o, = 0 for some simple roody. If this is the case, then the weight and its reflection

wj = 0q,w; give the same eigenvalue since

VWi =V O Wi = Oy VWi = 0w (3.1.25)

From the expression (3.1.22) for the Lax operator one finds [48] that the curves exhibit a
symmetryz — £ wherey was defined in (3.1.23), see also figure 3.1. Therefore the branch
points come in pairs to form square root branch cuts. There can also be other branch points or
even singular points for which(z) - h does not hit a wall of the fundamental Weyl chamber,

and these points are called accidental. We will assume that there are none of these points (it
can be checked explicitly in each case) but even if there are, it is possible to create a cover of
the curve in such a way that the accidental branch points and singularities are removed. This
cover is discussed in detail in section 3.5.

The preceding recipe tells us how to connect the sheets of the cover for finite values of
For z = 0 andz = oo there is also a good description of what happens in terms of the root
system ofg. On theP! base on which: takes its values we have given branch poirjfs
corresponding to each simple raet of g, whose various lifts to the sheets of the foliation
make up the branch cuts for finite values:ofOf course any lift of a closed curve on thez

sphere encircling all the branch points must come back to the sheet it started on since we can
deformC to a trivial curve on the sphere. Due to the symmetey— £ any lift of the closed
curveC" in figure 3.2 must also come back to the same sheet. AddiagdC’ we see that

any lift of a closed curve encircling all thg andz = 0 must also come back to the same
sheet, so that encircling onty= 0 has the same effect as encircling all the branch paints

2 Actually, this is not a reasonable assumption. Usually the curves are singular but there exists a
natural desingularisation which one should study instead, see section 3.5
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Figure 3.2: Thez-sphere is given twice faf, together with the branch points:= 0, co and thezii.
The curveC' in the left picture is trivial and is therefore closed when lifted to the Riemann surface.
Since all branch cuts are hyperelliptic the same is tru€fain the right picture.

Therefore, starting on the shegt with weightw and then making a circle around= 0,
one ends up on the sheet with weight wheres is the Coxeter element of the Weyl group
of g. So the branch cut between= 0 andz = co connects all the sheets whose weights are
in one orbit of the cyclic groufyy generated by.

In figure 3.3 we have given the example of Lie algeHrain the 10-dimensional represen-

tation [48]. The weights are given for each sheet, and two sheets are connected above the
«; cut if and only if their weights are exchanged under. The Coxeter elemern splits

the weights into two groups of 5, which specifies how the sheets are connected at infinity.
The genus of the curve is thys= 11, which is the same answer as one gets from a direct
calculation using the equation for the spectral curve given in (3.3.63). This shows that there
are no accidental points.

As another example, we consider agdin but now in the24-dimensional adjoint represen-
tation. This representation is not miniscule, because the weights split into two disjoint Weyl
orbits: the roots ofd, each of which has multiplicity, and the zero vector which has mul-
tiplicity 4. Consequently the Riemann surface splits into two parts, and we concentrate on
the part containing the highest weight and having degfeerhe genus of the curve is now

g = 25, see figure 3.4. Again accidental points are absent since a direct calculation of the
genus using the spectral curve (3.3.63) gives the same result.
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1 =[0,-1,0,0]
0\ % o —1000]
)\ a, 3 =[0010]
4 _[Oal,():_l]
. GS 5 :[1709_1a0]
6 :[17_19031]
VPO, 7 =[101-1]
8 :[09 s'lal]
( 9 =[1-1,1-1]
10=[-1,1,-1,0]
x-foliation z-plane

Figure 3.3: The Riemann surface fat, in the antisymmetric 10-dimensional representation. The
genus of the curve ig = 11 and we have labeled the weights by their coefficients in terms of the
fundamental weights. Picture taken from [48]

The list of Seiberg-Witten curves is [48],[30]

AN z—i—ﬁ—l—xNH—l—ulmN_l—i—...—i—uN =0 (3.1.26)
z

By x(z—l—g)+x2N+u1x2N_2—|—uzx2N_4...+uN:0

2
Cn (z — H) + 22 (x2N +u VT2 N 4 uN) =0

z
Dy z? (z + g) + 2w ™2 4 fungat +una® + u?\,,l =0
1

Eg §x3(z+%—i—uG)Q—ql(:E)(z—i—g+u6)+q2(m):O

p2\ p2\ 1w
Fy -8 <z+z) + s1(z) <z+z) + s2(x) <z+z> +s3(z) =0

2
Go 3(z—g)—x8+2uaz6—[u2+z+g}x4+[v+2u<z+g)} 2=0

Although the prepotential fof7, depends only on two variables and therefore trivially satis-
fies the WDVV equations, we have included the Seiberg-Witten curvesfan the list. The
curves forE; and Es have been omitted because they are big and cumbersome. The expres-
sions fors;(x), g;(x) can be found in appendix A. Note how for simply laced Lie algebras
the z dependence is characterized by

P(z+ gxul oty) = Pz + g = 0,2, U1, o iy + 2 + g) (3.1.27)

As we will see, there is a direct relation between the A-D-E Seiberg-Witten curves for any
representation on the one hand and the A-D-E Landau-Ginzburg superpotentials [60, 16] or
miniversal deformations of isolated singularities [5] on the other hand. The equation (3.1.27)
helps establish this relation, and the twisting procedure necessary to define the Seiberg-Witten
curves for the non simply laced Lie algebras disturbes it. If it wasn't for this twisting, there
would be a relation with the corresponding singularities [64].
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Figure 3.4: The Riemann surface fot, in the 24-dimensional adjoint representation. Since the spectral
curve splits into two parts, we have concentrated on the part containing the highest weight. The genus
of the curve iy = 25. As usual we have labeled the weights by their coefficients with respect to the
fundamental weights.
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9| An By Cn Dy Es | Fy | G
g N 2N -1 | 2N | 2N —-1| 34 | 46 | 11

Table 3.2: The genera for the Seiberg-Witten curvesAdP E type

For the classical Lie algebras there exists a change of variables that give the curves in the
following standard hyperelliptic form (see also section 3.1.1)

Typedy: y = z-%
yr = (IN+1+U1$N71+U21'N72+ +UN) — 4y
TypeBy: y = = (z — g)
y2 = ({EQN + ulmZN_Q + u2x2N_4... + uN)2 — 4um2
TypeCy: y = é(zQ—Z—j)
y: = (x2N+u p2N-2 +UN) (mQ (x2N+u1$2N 2 +UN) +4M)
TypeDy: y = 22 (z — g)
y2 = (IQN + u1z2N72 + ...+ uN_2x4 + uNx2 + u?v_l)z — 4;@4

The curves fois, Fy andG4 however arenot hyperelliptic. For generic values of the moduli
u; all curves within one family have the same genus, and a list of these genera is given in table
3.2.

As a final example, consider figure 3.5 where the curvdfpis depicted. Th&7 weights are
labeled by the coefficients in the expansion in terms of fundamental weights {36, 0, 0, 0]

stands for the fundamental dominant weightwhich is also the highest weight for this rep-
resentation. Each weight has multiplicity one, #ifesheets are connected:zat 0, co by the
Coxeter element and the orbits have dimension 12, 12 and 3. Above each simple root there
are6 square root branch cuts, giving the Riemann surface ggéhugich is the same as the
value found in table 3.2. This shows that there are no accidental points.

The Seiberg-Witten differential and its derivatives

The second ingredient of the Seiberg-Witten data is a special meromorphic diffepgntial

Definition 3.5. The Seiberg-Witten differentialsy is given by
Asw = log(z)dx = d(zlog(z)) —x— ~ —x— (3.1.28)
z
where~ denotes equality modulo total differentials.

Since we will mainly be interested in the period integrals gfy-, only its cohomology class
is important. In the specific case of Lie algebtg, the differential form (3.1.8) reduces to
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Figure 3.5: The Riemann surface fdts in the 27-dimensional representation. In thplane the branch
cuts are depicted according to the six simple rootE©fin standard notation) and the cut fram= 0

to oo is omitted. Above each root there are six pieces of plumbing connecting the three Coxeter orbits.

The genus of the curve is

= 34.
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(3.1.28) since
log(y + W)dx — log(2)dx = log(z — By H)daz —log(2)dx = log(z)dx (3.1.29)
z z

In terms of the Toda systemgyy plays the role of the action differentiadlq [48]. The main
special property of\gy that we are interested in is that its derivatives with respect to the
moduli parameters;, give holomorphic differentials.

Holomorphic differentials

In this section, we describe the construction of a basis of holomorphic differential forms on
any Riemann surface, see e.g. [10], [35]. Let the Riemann surface be given by an affine
equation

P(z,z) =0 (3.1.30)

In particular, we are interested in the affine curves obtained from the Seiberg-Witten family
(3.1.26). In order to make those curves affine, we multiply them with a monaorhiaf
minimal degree to mak® a polynomial. Viewing the curve as defining implicitly z), the
branch points are given ¥, = 0 and P, # 0. Consider the differential form

oz, z)dz o(z, z)dx

- = 3.1.31
w 2 2 ( )

Denoting the degréeof P by [P] = d, one finds that for) a polynomial of degree smaller

or equal tad — 3, the differential formw is nonsingular for all points except the singularities.

In particular,w is nonsingular in the branch points and due to the condition on the degree
of ¢ also at infinity. If there are no singular points, a basis of holomorphic forms can be
constructed from the as above, and their numberj$d — 1)(d — 2) which is in accordance
with the degree-genus formula for nonsingular curves (see e.g. [35]).

We will first check that the derivatives dfsy, are holomorphic outside the singular points.
Denote the Seiberg-Witten curves by

I

Pz, z,u) = Z (22 + u)i 2" (e, w) (3.1.32)
i=0

and the degree a? is given by
[P] = [qo] + 7 (3.1.33)
The derivatives of\ gy with respect to the moduli are given by

OAsw 0 dz P, dz
_ ol e az
Ouy, z z Py

auk

(3.1.34)

It can be checked explicitly for every Seiberg-Witten curve in (3.1.26) ¢ghas moduli
independent. Hencgg—k is a polynomial and taking into account that it is homogeneous in

3 Note the difference between the notation [.] of degrees of polynomials in terms of their variables
and the Lie algebraic degree [.]; .
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terms of the Lie algebraic grading, in Whi(zr‘nashgv times the degree of, we find that its
polynomial degree is

[P:k] <lgol+r—1—[up], =d—1—[u, (3.1.35)

and since theu; are the Casimir invariants of the Lie algebra, their Lie algebraic degree
is bigger or equal t@. Therefore the derivatives ofsy, are holomorphic for nonsingular
curves.

The restrictions that follow from the singularities are straightforward. In the affine coordinate
patch (not at infinity) one can write(z) as a convergent power serieshf # 0 using the
implicit function theorem. For singular points, using the method of Puiseux expansions one
can writex(z) as afractional power series instead, with a number of different series for each
individual singularity [35]. The formw should be nonsingular when each of these fractional
power series is substituted into it. The singular points which are at infinity are treated in the
same way after a change of variable@if to the relevant coordinate patch.

For the classical Lie algebras we have given the curves in standard hyperelliptic form in
(3.1.28) from which it is easy to see that the derivatives g, are holomorphic. FoEg, F,

and G, explicit computations were done using the computer algebra package Maple, which
show that the derivatives dfsy, are nonsingular not only in the branch points of the curve
and at infinity but even in its singular points. We therefore arrive at the following proposition

Proposition 3.6. The derivatives ofi sy with respect to the moduli are holomorphic for all
simple Lie algebras.

As an example, we consider the curve®f of genusl 1, given in (3.1.26). The 1 holomor-
phic forms are given by(Z2%= and a list of thep, is given below:

{or} = {IGZ,ISZ,CC4Z7JCSZ,I222, 22z 2% xz v, w21 — z2} (3.1.36)

On the other hand, the derivativesXdy, are given by

Osw  Pudz 4 9 9 o9y d2
9 = ﬁ7(2x272uxz+2:vz +2¢)E
8/\SW R,dz dz

and can be written as linear combinations of the holomorphic forms.

The subset of cycles

The third and final ingredient of the Seiberg-Witten data is a special sub&at midependent
cycles. ForAy in the fundamental representation one can take all cycles and no selection is
necessary. The Seiberg-Witten curves of the other classical Lie algebras in the fundamental
representation possess an involution which makes it easy to identify the special cycles. For
the remaining cases there exists a more general method [48],[29] based on the action of the
Weyl group on the curves. Here we treat only the simply laced Lie algebras, referring the
reader to [29] for the non simply laced ones.
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The special cycles for the B, C, D Lie algebras

We regard the curves in their hyperelliptic form (3.1.28). Each of them has the involution
o(xz) = —z. This helps us to identify the special cycles immediately: consider the curves as
defining implicitly y(x), and draw the branch cuts in theplane in such a way that the cuts
come in pairsk;" related byo. We denote the counterclockwise contour aroiifjd on the

first sheet b)Cf. The speciald cycles are then defined by

A, =CF-cC; (3.1.38)

The specialB cycles are the obvious ones going frdtiy to KL+ on the first sheet and back
again on the second, without intersecting each other.

Cycles for simply laced Lie algebras

Here we will discuss the more general method of identifying the special cycles, based on the
action of the Weyl group on the family of curves as discussed in section 3.1.3. This method
is independent of the particular representation used to define the Seiberg-Witten curves and it
solves the Adler-van Moerbeke problem of identifying the Liouville torus inside the Jacobian
of the Toda spectral curve for any representation.

First we note that any lifd%’ of a counterclockwise closed contatiy around only they; cut
on thez sphere to the she&, labeled by the weight is a closed curve on that sheet. If
o; -w = 0thenAY is trivial, otherwise it's not. Since the branch cuts come in pairs, the cycle
A¥ is homologous tG—Af‘”‘“. By multiplying the contribution of each cycle hy - «; the
contributions from the two different sheets add up singev - a; = —w - a;. Itis convenient
to introduce the combinations

~ 1 O W

AY = - (AY — A ™ 3.1.39

(2 2 ( (2 (3 ) ( )

These are the building blocks of thcycles.

Definition 3.7. The speciald cycles are given by
A =Nip Y (w-o)A? =Ny > (w-a;)AY (3.1.40)

where AY is the lift of C; to the sheet characterized by the weightThe absolute value of

w - a; determines how many times to wind around the cut and its sign determines in what
direction to wind: a positive value means anti-clockwise and negative means clockwise. The
normalisation factorV; , is given by

-
2 W - ai)?

On the other hand, we need a setibtycles. To define the cyclB;, we draw a number of
lifts BY to the sheeb,, of the open curveD; going fromz = 0to z = z; on thez sphere.
The number and direction of the lifts is again determinedbyy;: for examplew - a; = 1

means one strand going up fram= 0to z = 2z; on S, whilew - a; = —2 means two

N;, = (3.1.41)
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strands going down from = z; to z = 0 (see figure 3.6). Then for each Coxeter odjt

of sheets, we connect the strands through the cuts betweef andz = co. To prove that
this gives a closed curvB;, we note that the number of strands going down te- 0 on

Oy equals the number of strands going up, sidCg , (w - i) = (3 co, W) - @i = 0.

Therefore we can connect the strands on every Coxeter orbit, which shows; tisahdeed
closed. Again, it is convenient to introduce the linear combination

~ w 1 w aalw
By =5 (B =B;") (3.1.42)
We are now ready to define the spediatycles, see also figure 3.6.

Definition 3.8. The specialB cycles are given by

Bi=Ni,Y w B =Ni,» w-a; B (3.1.43)

whereBY is the lift of the open curvé®, to the sheef,,. The numbew - ; decides on the
direction and number of strands. The curve is then closed up through the cuts betwegn
andz = co.

The normalisation factodV; , is chosen in such a way that the period integrala g are
representation independent: 8p we have\gy = —v(2) -wdz—z due to (3.1.28) and therefore

Asw = Ni, w-ai% /\SW:Ni, w'ai]{ Asw
f; ”%: Ay > (A -7

w-a; >0 i i
" dz
= Nip Y weaid (~0(x) wto(z) oaw)
w-a; >0 Ci o
(w~ai)27{ dz
”’WZM el EUCRT
(w - a;)? dz
= N X e e
-1 d
_ % v(z) (3.1.44)
(6707 C; z

which is indeed representation independent. A similar reasoning shows that the period inte-
grals of A\gy over theB cycles are independent pf This is also true for the non simply
laced Lie algebras [29].

To show that thed and B cycles just defined have the proper intersection numbers, we pro-
ceed as follows. Itis clear that; o A; = B; o B; = 0andA; o B; = —B; o A; = v,0;; for
some numbety;. To determine they;, we count the intersection on each sh&gt Up to the
normalisation, the number of strands from tBeycle that cross the closed curve from the
cycle is|lw - «;| and there are also - a;| copies of thed cycles. Since the contribution to the
intersection is always positive we find that the contribution from the shigés$ |(w - ;)|
Summing the contributions for all sheets and taking into account the normalisation we find

1
AjoBj = (Ni,p)Q Z |w - ai|25ij = W(Ej (3.1.45)
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Figure 3.6: The Riemann surface fot, in the 24-dimensional adjoint representation, including the
cycles above the fourth simple root. The fourth root and fourth weight are equal and their norm is two,
thus causing two cycles of typk to encircle that branch cut and two strands to go up to the branch cut
to form a speciaB cycle. The speciafl cycle is therefore obtained by adding all typecycles in the
picture and the specidl cycle by adding theé3 type cycles, denoted by dotted lines.
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6
1 =1[0,-1,0]
2 =[-1,0,0]
3 =1[0,0,-1]
4 =10,0,1]
<4 | 5 =[1,0,0]
6 =1[0,1,0]

Figure 3.7: The curve forDs in the smalles6-dimensional representation. Sending all weightdo
—w; Is an involution of the curve, the same involution as sending —z.

Now consider the bilinear formy" (w - z)(w - y) on the linear space where the roots take
their values. This bilinear form is invariant under the Weyl group and therefore we find that
equals a multiple of the Euclidean inner product on the root space. So in the end we find that
1 1
AjoBj ~ ————0;5 ~ =05 (3.1.46)

[e7 N7 2 t
which is a multiple of the identity as it should be.

The special cycles for curves @fy have been defined in two ways, which we show to be
identical. The weights come in paitg, —w; which are related through — —z because

of (3.1.24). Every weight has nonzero inner product with only one simple root, so that the
A cycles (3.1.38) and (3.7) and the corresponding B cycles are the same. See figure 3.7 for
more details.

Definition of the prepotential

The Seiberg-Witten data has been introduced, consisting of the family of cigyveédefini-

tion 3.3), the Seiberg-Witten differentialsy, (definition 3.5) and a canonical subset2gf
cyclesA; and B; with the usual intersection numbers (definitions 3.7 and 3.8). We will need
the following lemma

Lemma 3.9. There exists an additional set of cyclds; .+, ..., A, with the appropriate in-
tersection numbers with the special cycles, and with the property that the period integrals of
Asw around them are zero.

In particular, this lemma implies that the special cycles are a subset of a canonical homology
basis.

Proof. For the classical Lie algebras, the additiodakycles are given by the-invariant
combinations

A, =Cf +CZ (3.2.1)
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see also (3.1.38). Since the period integrals are independente find thato acts as the
identity on them. On the other hand, the involutisends\sy to — sy and therefore we

conclude
g (ﬁ /\SW) = — jé: )\SW =0 (3.2.2)
A,; Az

Regarding the non simply laced Lie algebras, we again refer to [29] for the details about the
special cycles. For the simply laced ones, there is a special gydier each rootn;. After

our construction of additional cycles, the numberdtycles equals the number of branch
cuts for finite values of. These are too many cycles since the genus is the number of branch
cuts minus the number of cuts necessary to connect the different Coxeter orbits of weights.
Selecting a subset with elements (including the special cycles) gives the setl aycles
promised by the lemma.

Take a simple rooty;. There are just as many branch cuts abayas there are weights
with «; - w > 0. Corresponding te;, take a weightv; so thatw; - a; > 0. We introduce the
subsef; of the set of weight$) by

Qi ={w e€Qu ;) >0, #w} (3.2.3)

For everyw;, € Q, we define the cycle

;- Wy

A (3.2.4)

(2

Aj(wp) = Ay —

Q- wy,

wherefl;”'i is defined in section 3.1.5. Together with the special cygléhis gives a number
of cycles for each simple roat; equal to the number of branch cuts foy.

We calculate the intersection numbers with feand find

A QWi ~w! ”
Aj(wp) 0 Bj = N, (A = ——2 A7 )0} Jai - wBy" =
Qi - Wy, o

Nip <ai TWi — ;/‘ozi ~wk) d;; =0 (3.2.5)
(673N

Moreover, we will show that the period integralsXfy, over the cyclesd; (w),) are zero:

Q- Wy
% Asw = ¢ Asw — ,%M/ASW:
Ai(wr) AT it Wy JATE

i

. . W L. 4
s e Lk o
Ci Ci ‘

oo Z oW 0y

Repeating this construction of cycles for each simple root, we find that the numberycfes

now equals the number of branch cuts for finite values.of\s mentioned before, these are

too many since some cycles are needed to connect the different Coxeter orbits of weights. We
can always make a selection such that the cycles that are left out connect the Coxeter orbits.
Thus we end up with a set gfcanonicalA cycles promised by the lemma. O
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Using lemma 3.9 in combination with proposition 3.6, we can define the prepotential. First
we define the new variables

0 — ]{ sy 3.2.7)
A

7

which we can use to make a local change of variables on the moduli space. To prove that the
change of variables from; to a; is nonsingular, we note that the integrals of the holomorphic
differentialsag% around the cyclegly 41, ..., A4 are zero. Since th& by g matrix

OAsw

e (3.2.8)

must have rankV, we conclude that the determinant of the Jacobi matrix for the change of
variables fromu; to a; is nonzero.

This is similar to the situation for Lie algebr&y, which we discussed in section 3.1.1. We
proceed to define thig; by

b; :74 Asw (3.2.9)
B;

and their moduli derivatives
0b;
Oa; -

(3.2.10)

Since the special cycles are a subset of a canonical homology basis and since the holomor-

phic formsag% are canonical with respect to this basis

OAsw

—:51‘3‘ 1<i<yg 1<j<N (3211)
A; aaj

we find thatll;; is an/N by N submatrix of they by g period matrix, and therefore symmetric.
Due to this symmetry we can locally integrate theand find the prepotentiaf.

Definition 3.10. The prepotentialF(ay, ..., ay) is defined locally on the moduli space by
oF

b, = —/
J 6aj

(3.2.12)

In section 3.1.5 it was shown that andb; are representation independent, which shows that
although we have chosen the smallest representation to define the family of curves we could
in fact have used any irreducible representation and the prepotential is independent of this
choice.

The prepotential is not independent however of the choice of the special cycles. In particular,
a symplectic change of these cycles results in the definition of a different prepotential. Such a
symplectic change of cycles has the same effect as a symplectic transformation as discussed
in section 1.2.4, where it was shown that such transformations are contact symmetries of
the WDVV equations. Therefore, the different prepotentials either simultaneously satisfy
the WDVV equations or they all don't. In the following section a proof is given that the
prepotentials do satisfy the WDVV equations, and this proof does not depend on the choice
of cycles.
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The WDVV equations

In this section we prove that the prepotenti&la, ..., ay ), introduced in definition 3.10,
satisfy the WDVV system (1.2.2). To do this, we construct in section 3.3.2 a family of
associative commutative algebras with structure cons@.@(&) depending on the moduli
a; and we relate these structure constants with the third order derivativethobugh (1.2.3)

N
}—ijk = Z ij(a)Kkl
l,m=1
Kpy = amFkim (3.3.1)

for some set ofy,,,, possiblya; dependent. As explained in section 1.2, this proves that the
prepotentialF satisfies the WDVV system. We will use two different methods to prove the
relation 3.3.1: the first method [32] uses Picard-Fuchs equations and flat coordinates, and the
second method [47] uses a more widely applicable residue formula.

Preliminaries: Term orderings and Groebner bases

As preparation for the definition of the associative commutative algebras, we discuss some
basic aspects of the theory of ideals in polynomial rings, see e.g. [11]. For polynomial rings
C[z] in one variable, idealg are always generated by a single element. This generator is
up to a constant uniquely identified as the element of the ideal with minimal degtee in

To determine whether a polynomial is in the ideal or not we divide this polynomial by the
generator. If there is a zero remainder the polynomial i§ iotherwise not.

For polynomial rings in two or more variables the situation is more difficult. It can be shown
that every ideal is finitely generated, but the number of generators usually exceeds one. Also,
division by the generators has become less cledt:[if} one divides by looking at the highest
degree term inc and the rest simply follows. Here it is not clear which term has highest
degree. To fix this one introduces a term ordering, a total ordering which prescribes what is
the leading term of a polynomial. For instance, the lexicographical orderifyiny| sais

that one should first look at the powersaobccurring in the polynomial and if there are equal
powers then further distinction is made using the powerg.oAs an example we consider

x* + y22? + y?z + yx whose leading term is* in the lexicographical term ordering.

Now that we have introduced the term ordering, we can divide polynomials by the ideal
generators to determine whether or not they ate idowever, the order of division influences

the outcome: the remainder after several divisions can contain different representatives of the
same equivalence class @z, y] depending on the order of division. @roebner basiof
generators for the ideal is a particular basis with two special properties: the first one is that the
order of division is irrelevant, the outcome is always the same. The second property is that an
element of the ideal gives zero remainder after division regardless of the term ordering. After
the construction of a Groebner basis, membership of the ideal can therefore be decided using
a straightforward division algorithm.

We will now briefly describe Buchberger’s algorithm [11] to obtain a Groebner basis from
a given set of generatoys, ..., p,. First one defines thé&-polynomial S(p1,p2) of two
polynomials. Multiplyp; andp, with monomials of minimal degree (with respect to the
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3.3.2

term ordering) such that their leading terms become equal. Then subtract one from the other
and this givesS(p1, p2). For instance, in the lexicographical term ordering we have

S(z* + y*2? + yPr + yx,yz? + i) =
y (y2x2 Jry2$+yl_+x4> g2 (y?’x +ym2) _
— 323+ + P+ %z (3.3.2)

The algorithm to produce a Groebner basis is now as follows: first one takes the basis
p1, ..., pn, @nd divides the polynomials amongst each other in random order. If a division
is possible then we replace that polynomial by its remainder. Then we adtiploé/nomial

of two random elements in the basis and divide it in random order by the other basis ele-
ments, again replacing it by its remainder if division is possible. We repeat this process over
and over again, until ever§-polynomial of two polynomials is already in the basis. We have
then obtained a Groebner basis.

The family of associative algebras

For each simple Lie algebra, we will construct a family of polynomial algebras over an ideal.
Since they are polynomial, they are automatically commutative and associative. Further-
more, the choice of a unit element will eventually determine the precise linear combination
K appearing in the WDVV equations (1.2.2).

We will again denote the algebraic curves by

Pla, 2+ 2 u) =0 (3.3.3)
z
and for our convenience we will consider them as the double cover of a torus
P(z,w,u;) =0
z+ % =w (3.3.4)

The functionP is now a polynomial in the two variables w. We introduce the ideal =
(P, P;) in Clz, w]. We will check for each simply laced Lie algebra that fhg = g—i span
a subalgebra o€ [z, w]/I.

Definition 3.11. For any simple Lie algebrg whose family of Seiberg-Witten curves is given
by P(z,w) = 0, the family of algebras4 is defined by taking subalgebras 6z, w]/I
where] is the ideal generated b} and P,. These subalgebras are the ones generated by
the P,, and are automatically associative and commutative as subalgebras of a polynomial
algebra.

Since the Seiberg-Witten family of curves is formulated in terms ofithas moduli, we
will give often give the algebras in terms of thie,, = >, ggi P,, which span the same
subalgebra as thE,,. In fact, given any good local coordinate system on the moduli space,
the algebra can always be defined in terms of the derivativeB wafith respect to those

coordinates. In terms of the; the structure constants are defined through

Py Py, =Y C(a,u)PyaqP, mod I (3.3.5)
k.q
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Chapter 3 The full Seiberg-Witten prepotentials

Wherezq aqP,, serves as the unit element of the algebra. The dependence of the structure
constants on the unit element and the coordinateis emphasized. Making the change of
coordinates to the; we find that the structure constants transform & &) tensor into

Ouy 8um Oay,
(J — 3.3.6
lZ Fa; 9. Chml@ W) 3 (3.3.6)
and the new algebra unit is
> BpPa, = Z g5 L day P% (3.3.7)
p

3321 Three realizations of the same algebra

It will be useful to have three realizations of the same algebra: to prove that it exists, we will
use the polynomial multiplication

P, P, = Z Cl Py, aqPu, + Qij Py (3.3.8)
k.q

To make the connection with flat coordinates and Landau-Ginzburg theory in section 3.3.3,
we will use an algebra of rational functions whose multiplication reads

k —Qyj k
Wy Wy = E Cii Wy, gy, + B Wy = E Cii Wy, gy, + Qijwy (3.3.9
k.,q w k

wherew,,, = P == andw plays the role of a one-variable Landau-Ginzburg superpotential.
Finally, to show | in subsection 3.3.7 that the algebraic functidm, u;) is a superpotential

for any choice of the representation, we will regard the algebra as an algebra of holomorphic
forms [47]

a/\SW ® 8/\SW - ch 8)\SW 8>\SW n QU dz dz (3310)

8’[1,1' an H 8 © Y 8’U,q Pz ? ©

k.q

The elements of the left and right hand sides of this equation are elemedtsthie space of
holomorphic quadratic differentials.

But first we will prove the existence of the algebras in the upcoming paragraphs, using the
polynomial algebra (3.3.8).

Type AN
The family of Riemann surfaces in this case is given by
Pay(z,w) =w+W(z,u) =0 (3.3.11)

whereW is the Ay Landau-Ginzburg superpotential. The idda. C[z,w] is given by
I = (w+ W,W,). SinceP,, = W,, depends only on: we find that we can restrict our
attention toC[z]/.J where/J is the ideal generated BY..
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Consider the polynomial algebra

N
Py Py, = Y ClPyanPu, mod P, (3.3.12)

k,m=1

Due to the particulaP under consideration, this algebra simplifies to

N
W, W, = > Cl(a, )W, aqWa, mod ¥/, (3.3.13)
k,q=1

which is just the well-known Landau-Ginzburg algebra. The algebra exists bedauisea
degreeN polynomial inz generating the ideal in C[z] and theW,,, = ¥ —7 form a basis
of C[z]/J. Since itis a polynomial algebra, it is automatically associative and commutative.

As an example, we give the structure constaifiga, = 6,4, u) of A4.

—%uz —%u2+%u% %UNLQ %Ulu?)
—%ul _%UQ —zUus 0
() = (3.3.14)
0 7%’(11 7%’&2 7%713
1 0 0 0
—3uy —2uy —iug 0
0 *gm *%uz *%U:a
k
(02)]‘ -
1 0 0 0
0 1 0 0
0 —%Ul 7%’&2 7%11,3
1 0 0 0
(Cs); =
0 1 0 0
0 0 1 0
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Chapter 3 The full Seiberg-Witten prepotentials

[an}

—
S = O O
= o o O

Type Bn

The family of Riemann surfaces in this case is given by

Pp,(z,w) = zw + WBY = zw + 2N + w12V 2 w1+ uy =0 (3.3.15)

whereW B¢ is the typeBC Landau-Ginzburg superpotential. The idéak given byl =
(zw+WBC w+WBC). SinceP,, = WS depends only on we find that we can restrict
our attention toC[z]/J with an idealJ. To see what/ should be, we calculate a Groebner
basis ofI in terms of a lexicographical order in whiah > 2 and we find that the only
element in the basis not dependingwois WE¢ — zWBC. To see that this is an element of
I we note that

WBC — awBC = (ww+WBC) —x(w+ch) (3.3.16)

The quotient ringC[z]/.J consists of polynomials up to degr2® and sincéV B¢ — z W B¢
contains only even degree terms thg, span a subalgebra consisting of polynomials of even
degree inClx]/J.

As an example, we give the structure constafffga, = 4,3, u) of the algebra foi3; and

note that this is not the Landau-Ginzburg algebra of tigge [64]. This is no coincidence:

due to the twisting procedure frog") to (g(l))v in the definition of the Seiberg-Witten fam-

ily of curves, the relationship between the Seiberg-Witten algebra and the Landau-Ginzburg
algebra is lost for the non simply laced Lie algebras. For the simply laced ones the two
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algebras are in fact the same, as we will see.

—%ug—l—%u% %u:;—l—%umz —Q%U1U3
oV = 3 1 1
( 1)j - —3U1 —pU2 pU3
1 0 0
—pUr —jFU2 FUu3
k
(Ca); = 1 0 0
0 1 0
100
k
(Cs); = 010
0 01

Type Cn
The family of Riemann surfaces in this case is given by
Pey (z,w) = w? — 4p + 2*WBC =0 (3.3.17)

The ideall is given byl = (w? — 4y + 22WBC 2:WBC + 22WEC). SinceP,, depends
only onz we find that we can restrict our attention @&[x]/.J with an idealJ where J is
generated bW B¢ + 22WBC. The quotient ringC[z]/J consists of polynomials up to
degreeN + 1 and sinczW B 4 22W B¢ contains only odd degree terms the polynomials
of even degree span a subalgebraljxz|/.J. The dimension of this subalgebra however is
N + 1, and we only haveéV polynomialsP,,. Still the P,, which have degree im greater

or equal to2 span yet a smaller subalgebra, because the lowest degregciturring in the
ideal generator is degree

Type DN
The family of Riemann surfaces in this case is given by

Pp, (z,w) = z?w+ WP =

22w+ 2N 42?2+ L un_ext Funa? + u?v_l =0 (3.3.18)
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Chapter 3 The full Seiberg-Witten prepotentials

The ideall is given byl = (z?w + WP, 22w + W)). SinceP,, = W] depends only on
x we find that we can restrict our attention@jz|/.J with an idealJ. To see what/ should
be, we calculate a Groebner basis/ah terms of a lexicographical order in whieh > =
and we find that the only element in the basis not depending @2W? — zWPL. To see
that this is an element dfwe note that

2WP —aWp =2 (2®w+ WP) -z (2aw+ W)) (3.3.19)

The quotient ringC|x]/J consists of polynomials up to degre&’ and sinceW? — 2W >
contains only even degree terms thg, span a subalgebra consisting of polynomials of even
degree inClz]/J. Note that this is precisely the Landau-Ginzburg algebra for fype

Type Eg

Until now, the polynomialP(z, w, u;) did not contain terms mixing with the moduliu;.

This allowed us to consider polynomial algebras in one variable. Any ideal is then generated
by just one polynomial and calculations are done by dividing by this polynomial. Egor

this is no longer the case. Since mixing does occur, we are forced to use the two-variable
ring Clz, w] in which it is no longer guaranteed that an ideal is generated by one polyno-
mial. Nevertheless one can construct a finite Groebner basis for the ideal in such a way that
calculations in the quotient ring can be done by using a division algorithm to divide out the
elements of the basis.

An additional help in explicit computations is the grading that is present. As mentioned be-
fore, the principal grading of the affine Lie algebra causes the Riemann surfaces and Seiberg-
Witten differential to be graded as well, and in turn the algebra that we are constructing is
graded. Since the dependence on the Casimiis always polynomial, we can predict the
dependence of the structure consta@fﬂu) on the Casimirs. The only thing we have to
calculate explicitly are the coefficients of the various terms, which are just numbers. For
example, if we takey, = ¢, ¢ then the algebra becomes

Py, Py, = Cf(u)P,, Py, modT (3.3.20)
k

The degree of is 27, the degrees of the Casimirs, ..., ug are respectivel?, 5,6, 8,9, 12
and thusC?, (u) for example has degréé. The terms that constitute?, are therefores3us,
uous anduyus and only their coefficients need to be determined.

Explicit computation of the Groebner basis (using a lexicographical term ordering) shows
that the quotient algebr@|[z, w]/I is 57-dimensional, and the algebra generated byithe

is a 6-dimensional subalgebra. The fact that it's a closed subalgebra is by no means trivial.
This subalgebra is precisely the Landau-Ginzburg algebra [21].

Type Fy4

Again we have used Groebner bases theory together with the grading to determine the struc-
ture constants. Explicit computation of the Groebner basis (using a lexicographical term
ordering) shows that the quotient algelé?ar, w]/I is 78-dimensional, and the algebra gen-
erated by theP,, is a nontrivial 4-dimensional subalgebra. Just like in the other non simply
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laced cases this is not the Landau-Ginzburg algebra of Bfp&vhich is given in [64]. The
structure constan@fj(aq = 4.4, u) are given by [26]:

250,4 10 7 25,3, 1 5,2
ur (3gul — Gurue— jus)  —5qui + jup —3ui 1
100, 4 140, 3 5 7
{1 UlU2 + S uju3— ul(—§u1U2— §U3) —6uz— 2ugus 0
2 2 4
SUIUF — SUIUL — 2uousg
k
(ClT) - 2 2,2 1 5.2 2
—Sujugug — Fuz+ FUq — 5o UTUZ —Zuiug 0
100, .4 10,2
mul’l,tg — ﬁu1u4
10,2,2 _ 1 1,2 5,2
JUTU3 — FUIUUL— —5U5 — 7gUiU4 —UUy 0
50,4
U3y + ST UTU4
2,341 5 3
52UT + 7U2 satr 1 0
5 7 1
(5% (7§U1U2 - §U3) ZUQ 0 1
Tk _
(€3); =
1, _ 5,2 1
SUg — - UTUS sus 0 0
1,2 5,2 1
—u3 — 7gUU4 sus 0 0
_5 3
Juy 1 0 0
—6U3 — QU1UQ 0 —6U1 0
™k _
(C5); =
2 0 0 1
—3u1u3
9
—Ui1U4 0 —§’LL3 0

4 To get a better lay-out, we give the transpose matrices (CZT);C = (C’i){;.
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o

<
o O O =
S O =
o — o o
= o o o

It can be checked explicitly that these are indeed the structure constants of an associative
commutative algebra.

Type G

Finally, we arrive at the7s case. Although the WDVV equations are trivially satisfied,
we give the family of associative algebras to show how it fits the general pattern. Since the
Groebner basis of the ideal generatedibgnd P, is not so big, we can give it explicitly:

{ 288uz? + 1922'3 — 384uax' — 172825 — 1202230 — 48u’xp +

24uva® + 576upa® + 16utz® + 3zv? — 1122743 + 4827w,

—288x! + 528uz® — 344u’x” — 90vx® + 2592ux> —

Sdvaw — 432zup + 1142°u® — 2423uv — 10ut2® + 5uzv + 10uzw,
—1620w? + 30u*w? + 288z ?u — 528z'%u* —

54vz® + 354uda® — 1240’28 + 144vua® — 2592uxy +

24uzto 4+ 10u’ 2 + 432022 — 272202 + 648vpu — 120u3u} (3.3.21)
The resulting structure constants with = ¢, » are

c - —%uz fgqurlﬁu
1 0

Cy =

Lie algebraG, constitutes the only example where due to the twisting procedure the parame-
ter u appears explicitly in the structure constants, making it painstakingly clear that the direct
relation between this algebra and the Landau-Ginzburg algebra is lost.

After having introduced the prepotenti& and family of algebrasd separately, it remains

to relate the two. There are two methods known in the literature of doing this. One method
exploits the existence of flat coordinates in the Landau-Ginzburg context and interprets the
relation (3.3.1) as Picard-Fuchs equations [32]. It has the drawback of not being directly
applicable to the non simply laced Lie algebras, for which flat coordinates in general do not
exist. The other method is more widely applicable and uses a residue formula [47], [39]. We
will explain both methods in detail below.
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3.3.3

The Gauss-Manin connection, flat coordinates and Picard-Fuchs equations

This section deals only with the simply laced Lie algebras, since there is a hatural connection
between the structure constants of the algebra and the definition of flat coordinates for them.
The non simply laced algebras are discussed in the next section.

Given a family of subvarietieX C P" fibered over a moduli spackt, there is a method dat-

ing back to Griffiths [23] of obtaining a set of differential equations for period integrals when
differentiated with respect to the moduli. Such equations are called Picard-Fuchs equations.
Let X be given by an affine equatioR(z1, ...,z,) = 0 and take a closed cycle c P"

which encloses(. We consider integrals of the type

¢
¢W = ] i (3.3.22)

whereg is a polynomial and? is the form onP™ given in local coordinates by
Q=dxy N... Ndx, (3.3.23)

in the coordinate patch whers, | ; # 0. Differentiating¢") with respect to the moduli, we

get
9¢ opP
6C(l) Ou Ouj
S :/: - — o | 0 (3.3.24)

The mainidea is to perform a series of partial integrations to reduce the poweiscoiirring
in the denominator: each term of the form

Yok
I (3.3.25)
equals
" - v
i/:d (ﬁdxl A Adap A o A dxn> $/: 8;; Q (3.3.26)

chosing a term ordering and constructing a Groebner basis for thelidgaierated by the
gTi one makes sure that the order of division is irrelevant.

So we have to divide5Z by the variousZZ- in order to do those partial integrations. By
- .

In caseX is a miniversal deformation of a singularity gfDE type [5], C[z1, ..., xs)/I

is called the Jacobian ring and its dimension the Milnor number of the singularity. The
g—i generate a finite-dimensional subalgebra of the Jacobian ring and one can consider the
integrals

O _ Ou;
¢ _/FQ (3.3.27)

Using the algebra together with the partial integrations one gets the following set of differen-
tial equations

a (l) n —n
a%, - lejClilH) + ngjl)k lil Y — 0 (3.3.28)
7 n
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More formally this is the equation of a flat connection, called the Gauss-Manin connection, on
a cohomology bundle ovet1 of which the(i(l) are sections. One can check the integrability
conditions of the connection separately for each powér of the denominator, which leads

to the following identities on the structure constants

[Ci’ Oj] =0
ock  ack
By = D (3.3.29)

whereC; is the matrix with coeﬁicient@*fj. The first of these equations expresses the as-

sociativity of the algebra, and is automatically fulfilled. The second puts an integrability
condition on the structure constants, so tﬁ&} = a?jg: for some set of functiong™*.

i J
Saito [58] then goes on to construct the flat coordinates, in terms of which the connection

FE‘?)'“ vanishes.

As an alternative to the integrals ove&r we can use the higher dimensional analogue of
Cauchy’s residue theorem [10] to study period integrals over closed cyclés itself, on
which P = 0. We will consider the family of Riemann surfac&sas subvarieties aP?
fibered ovetM. We have indicated in section 3.1.1 how to differentiate conomology elements
with respect to the moduli. We consider the subrihgf the full cohomology ring, generated

by 235w and gfﬁgy with i < j. Itis not hard to see that these are all linearly independent
i iOUj

and therefore constitute a bagig; } of the subringB. We will need the following lemma

Lemma 3.12. [21, 31] For simply laced Lie algebras, the following Picard-Fuchs equations
hold in the cohomology subring

dw  0Qij

82)\SW k 82/\SW Ou;Ouy ox
_ k ¢ dx = 3.3.30
0u;0u, Z i) JurOun * w2 — 4p v=0 ( )

where the structure constam?% (u) are defined through (3.3.5), using, = i, ~.

Proof. Usingw = z + £, the first order derivative oksy, equals

OAsw  Olog(z) 1dz ow 3;“
— = =% g 3.331
ou; ou; T L dw Ou; v w2 — 4p ! ( )
and therefore the second order derivative equals
ow ow Ow
[P w00 W5y, Bu;
LU T Sy, P —CLT LY R—; (3.3.32)

TN TR W

Substituting the algebra (3.3.9) with, = J, n, performing a partial integration on the part

containing@;; and noting tha% = 0 finishes the proof of the lemma. This last fact
follows from (3.1.27), which ensures that

ow P,
Bk | 3.
e P (3.3.33)

O
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Denoting the basis aB by {x;} we can reformulate the Picard-Fuchs equations as

0 .
5o Xi D Thixe =0 (3.3.34)
¢ k
thus again defining a flat connection. Since
O*Asw waakaaau—ujv
Duun ( _ zdx (3.3.35)
w f4u)

we can split up the connectlde = 1“(1) + F(3)'C according to the number of powers of

the square roots occurring in the denomlnator For the term with three powers, the flatness
condition reduces to the two identities (3.3.29) on the structure constants of the algebra.

It turns out that the flat coordinatésfrom singularity theory precisely caua‘,éjl.)’“(t) =0,
and therefore again get the interpretation of flat coordinates. In terms of them, the Picard-
Fuchs equations read

02 . 02
e, Xk: CE(t) e f Asw =0 (3.3.36)

where we integrated over an arbitrary cyEleWe can now prove the following theorem

Theorem 3.13. [32] For simply laced Lie algebras, the prepotential and structure con-
stantsC}; (63, a) are related by

da;0a;0ay 8a dap, Z 17 (8, @) B Fiim (3.3.37)
z J

Therefore the prepotentigf(ay, ..., aN) satisfies the WDVV system.
Proof. Changing the coordinates froimto a; in equation (3.3.36), we find

da; 0a; <~ ., . Oa; da;\ 02
Z <8tr 8t5 zt: CTS (t) 8tt % 8ai8aj f;‘/\SW +

ij

8%a; 9%a; OAsw
- Ct(t : =0 3.3.38
3 (e~ Dt ) 52 ©339)
Ordinarily, the two halves of this equation need not vanish separately. However, since
a; =7{ Asw (3.3.39)
A;

we find thata; satisfies (3.3.36) and therefore the second half of equation (3.3.38) vanishes.
Taking the cycld” = By, and definings,, = %Z—JZ"’ the first half can be rewritten as

3 3
0°F _ Z ot, Ot C’ﬁg(t)% dapm, o°F
0a;0a;0ay, L= Oa; Oa; """ Oty Oty ) OapOa;0a,,
BPF
= Z a)Bm dardaoa,, (3.3.40)

O
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Picard-Fuchs equations for the non simply laced algebras

For simply laced Lie algebras, the family of associative algebras precisely the Landau-
Ginzburg algebra. This gives us the direct connection between the flat coordinates and the
algebra, expressed in equation (3.3.36). For non simply laced Lie algebras, the associative
algebras are not the Landau-Ginzburg algebras [64]. For example, there is only one Landau-
Ginzburg algebra of typ@C whereas there are two separate algebras in the Seiberg-Witten
context. Nevertheless we can show that for the clasgcahdC algebras, a similar relation

to (3.3.37) still holds, now connecting the Landau-Ginzburg flat coordinates to the Seiberg-
Witten algebras. This allows us to continue the proof.

Proposition 3.14.[27] For the non simply laced Lie algebras of tyfay andC'y the relation
(3.3.37) holds. Therefore the corresponding prepotentials satisfy the WDVV equations.

Proof. We first define theBC' Landau-Ginzburg algebra. In terms of its flat coordinates the
multiplication structure reads

awBC
oi(t) = — at,
¢i(t)d;(t) = CH()er(t) +Qi;WrPC (3.3.41)

Furtermore, it is not hard to show th@;; is divisable byx and we expresg);; as a linear
combination

Qij =Y Df(t)u (3.3.42)
k

n [32] the following set of Picard-Fuchs equations was obtained

82 . i é Z Z Ed t 2 +
6ti8tj Pt 8tk8t]\/ ZJ Ot.0t,

k=1n=1
~ 1 8
k
ZDU’W (1 —di) tk>7§>\sw =0 (3.3.43)

where theC‘Z@ (t) are the structure constants of the' Landau-Ginzburg theory, thé, are
the degrees of the Lie algebra ang- 1(—1) for By (Cy). Making a change of coordinates
to thea; just like we did for simply laced algebras and using the fact thatathsatisfy
(3.3.43), we get

Oa; Oa; o Oa; Oaj ~; €dpty Oa; Oaj 0?2 j{
— - t —L - D:, - Asw =
zj: [atr ot ;Crs( ot ot ;; TRy Oty Oty | Dasday W 0
(3.3.44)
Unfortunately, this is not in the form of (3.3.38) and we cannot continue as before. We do see
however that the fourth term in (3.3.43) does not contribute to (3.3.44). So we go back to the

first three terms of (3.3.43) and with the benefit of hindsight we introduce new obifg(:t};
as

d tn
CE(t) = 7L (t ZDl Cn'n k. (3.3.45)
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We substitute this into the first three terms of (3.3.43) and obtain

- k(t)i 7{/\ +
atot, ooty ) S
82

AL Gdntn 82 k

l,n

This expression consists of two parts. Making the change of coordinates doviréables
gives two equations that have to vanish separately, one for each of the two parts of (3.3.46).
Each of these equations then boils down to the relation

Oa,
Fijk = vj(a) 5= Ft Fm (3.3.47)

and proves that the WDVV equations hold if thg(t) are well-defined and if they are the
structure constants of some associative algebra. This is the subject of the following lemma.

Lemma 3.15.The objectsﬁg (t) defined through relation (3.3.45) exist and they are precisely
the structure constant@fj (t) of the Seiberg-Witten algebra in terms of the coordinates
The Seiberg-Witten algebras were defined separatelyfprand C'y in section 3.3.2.

Proof. We will restrict ourselves to th&y case here, the proof fary is very similar. We
will rewrite (3.3.41) in such a way that it becomes of the form

va Vi (t) + Rij [20,WBC — WBC] (3.3.48)

As a first step, we use (3.3.45):

iy = C’ D al_WBC}
’" 2nt" S oA o
B ( Tn— 1%L> ¢ +Di ¢x8wWBcl
J
. 2nt” B
= |6 =D Y5 o — G+ Di Gaw (3.3.49)
L n=1 j

The notationg stands for the vector with componenis and we use a matrix notation for

the structure constants. There are two things about this equation that we would like to change:
the first thing is that we want the structure constants to be defined by the first term, so we
would like the middle term to vanish. The second thing is that we want the third term to
contain the generatd’ 2¢ — W EC of the idealJ. As a first step towards resolving both
these problems, we will take part of the third term and cancel it with the middle term. To do
this, we will use the following equation which expresses &t is homogeneous in the

Lie algebraic grading

oW BC

= INW BC (3.3.50)

eWPC 4 Z 2nt,
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Using this equation we can cancel the middle term of (3.3.49) with part of the third term at
the expense of introducing new terms which then have to be canceled etcetera. This recursive
process will end however and yield the desired result. First we split up the third term of
(3.3.49) as follows

1 . - o
Bcl _ BC | N BC
[D bW L[ D G (1+2N_1>D2 &z L

_ i BC 2ND BC
= l 2N7 o <2NW Z2ntn¢n> N S paWl 1 | (3.3.51)
J

n=1

Using the Landau-Ginzburg algebra (3.3.41) we rewrite the productsaxfcurring here,
thus rewriting (3.3.49) as

bid; = [%'5)—2]\?11-Z2ntn(7n-$—én~$)—

D;
2N -1

2N D; Bo
+ton 1 [2W; ¢ = Wpe], (3.3.52)

sz D, - gzWBC

J
We now use (3.3.45) again to rewrite the second term in the first line. Then we find

— ﬁl 2mit™
¢i¢j:[’Yi'¢—2N_1'Zn:2ntn< D, %: b+
D, - ¢aWP ﬂ }+2N_ T [aW )] fWBcL. (3.3.53)
J

Note that by cancelling one term, we automatically calculate madfF© — W . We can

now repeat the whole process on the term between round brackets in the first line of (3.3.53).
This is a recursive process and each step will introduce an extra factor do see that the
recursive process stops, we will prove that figare nilpotent matrices.

The degree of);; is [Qi;] = 2N + 1 — 2(i + j). Dividing by « the degree becom@sV —
2(i + j). Since[¢r] = 2N — 2k one cannot divide% by ¢, for 7 > k and therefore the
matrix D; defined in (3.3.42) is lower triangular and thus nilpotent. O

O

Duality transformations and Picard-Fuchs equations

The proof of the WDVV equations by means of the Picard-Fuchs equations makes particu-
larly clear the role that the duality transformations, discussed in section 1.2.4, play in Seiberg-
Witten theory [25]. We have defined the spe@al cycles on the family of Riemann surface

as part of a canonical basis of cycles, and the proof of the WDVV equations does not change
at all if we apply a symplectic transformation to the cycles. So although different choices of
cycles give different prepotentials, all of these prepotentials will satisfy the WDVV system
(1.2.2).
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The residue formula

An alternative to the approach of Picard-Fuchs equations is given by the residue formula [47],
whose origins lie in the theory of integrable systems [39].

A common way of proving Riemann’s bilinear relations on a Riemann subfas¢o cut open

the surface to obtain a fundamentatsided polygornil and use Cauchy’s residue theorem
onII. We will use the same method to obtain a residue formula for the third order derivatives
of F.

We start by rewritingF; jx = as follows

da; Ba day,

0 0
fiﬂ‘kZa—%’”ij:aTZf wi?{ e
Ow; Ow; Ow;j
;Am Oay, 7{@0 +Zj{ wzfm Oay, OJFZ%,,L%%MM

;(;ﬁmwiém gz; Zjé f gZ;)- feS(xigZZ) (3.3.54)

wherey; is a function which is single valued di but not on, defined in such a way
thatdy; = w; onlIl. It is always possible to find such; sincell is simply connected, and
therefore the holomorphic differential, = agSW is exact orl.

In the derivation of (3.3.54) essential use has been made of the fact that

OAsw
— =0y (3.3.55)

A; aaj J
This relation holds for all Lie algebras due to the particular construction of cycles in section
3.1.5 and lemma 3.9. We can work d&y;, further and find

Proposition 3.16. [47] The following residue formula holds
_ Wi Qw; Qwg | PaiPaj P,
Fijk = Tes ( e ® ) =) res ( DD, (3.3.56)

Proof. We can calculat ‘;’; = 32—552 keeping in mind that we can throw away any terms
that do not contribute to the residue. Due to the second differentiatiagf poles arise at

the zeroes of’,. These mark the branch points of the curve, so we need precisely two factors
P, in the denominator to get a contribution to the residue. We then find up to terms that do

not contribute to the residue

O Agw _ 0%z dz 0 [Py, dz
da;0ar, ~  Oajday z 8a] P, ) z
o Pajakdizii Pajpak dz
o P, =z dxr P, zP,
d (Py, P\ dz
- % i Ok .3.57
dx ( P, ) 2Py (3.3.57)
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Performing a partial integration we find [47]

aCU‘ d P{le(J, dZ
Z res (Xi%Z) = Z res (_Xia (Tk) P, ) =

dXz PajPak dz PLPaJPak
and this ends the proof. O

In the proof of the residue formula, the calculation of the second order derivativesofs

similar to the one for the Picard-Fuchs method. The crucial difference however is that some
terms can be neglected because they do not contribute to the residue. This makes the residue
formula applicable also for the non simply laced Lie algebras. After having obtained the
above proposition, the proof that satisfies the WDVV system becomes trivial.

Corollary 3.17. The relation (3.3.37) follows from the definition of the algebra together with
the residue formula of proposition 3.16. Therefore we conclude again that the prepotential
F satisfies the WDVV system, using now the residue formula instead of the Picard-Fuchs
equations.

3.3.7 Representation independence of the family of associative algebras

We have shown in section 3.1.5 that the period integralssgf over the first\V cycles of
type A and the firstV cycles of typeB are independent of the representatioof g chosen
to define the family of spectral curves. Therefore also the prepotefitald the proof of the
WDVV equations are representation independent.

Since a family of associative algebras is connected to a function satisfying the WDVV equa-
tions, this strongly suggests that the familydefined in section 3.3.2 exists for any represen-
tation and is independent of it. If so, then the spectral equation

P(z,w,u;) =0 (3.3.59)
implicitly defines a one-variable Landau-Ginzburg superpoteatial, ;).

Proposition 3.18. For any irreducible representationthe family.4 of algebras, see (3.3.10),
is defined and is independentofTherefore the implicitly defined functian z, «;) is a one-
variable Landau-Ginzburg superpotential for apy

Proof. Since the period integrals ofsy are representation independent, the derivation of
the residue formula (3.3.56) is representation independent. Since the WDVV equations hold,
we find that

w; @ w; Q@ wy & da; WE QW @ Wy,
re = Ci(a)— res| ————— 3.3.60
2 ( e & ) 2 Wi 2 ( TEEE ) o250

thus showing that the algebra (3.3.10)

dz
Wi ®w; = Z —wk ® Wy mod — (3.3.61)
is representation independent. O
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As an example, we will consider the Lie algebda in the 5, 10 and 24 dimensional repre-
sentations The spectral curves are given by

P = wHa®+uz® + usz? + usz + uy (3.3.62)

Py = w?+ <—11x5 — duq® = Tuga® + (—u% + duz)x + 2uy — uluQ>w
—2'% — 328uy + 2 ug + (—3u? + 3uz)x® + (—11luy + 2uyug)2® +
(ud + 2urus — ud)xt + (—dugus — duguy + uiug)x> +
(—Tugus + uiduy — utuz + 4ud)x® + (—us + duguz — ugud)z —

ui + u%ug — UgUL U (3.3.63)

5 The 24-dimensional adjoint representation is not miniscule and we consider only the part of the
curve containing the highest weight
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Py = x* 4 10u;x"® + (39u? + 10u3)x'% + (3.3.64)
(105u3 + 25u3 + 25(—u? + 2uz)up )x™* +
(533/4uf + 92uiu3 + 200(uy + W)uy +
29/2(—u? + 2uz)u? — 95/4(—ui + 2uz)*)x'? +
(74u3 + 248uiu3 + 400(ug + W)u1u2 — 82(—u? + 2uz)u} +
625(uy + w)? 4 130(—u? + 2uz)ui — 90(—u? + 2uz)*u; )x'° +
(—=7/2u$ + 406uus — 235(uy + W)uiug — 149(—u? + 2us)uf —
53uj3 + 354( u? + 2u?,)u1u2 475(—u? + 2u3)(ug + W)uy —
231/2(—u? + 2u3)*ui + 1750(us + w)?uy + 5(—uf + 2u3)*)x® +
(—30u] + 883/2uiu3 — 995(u4 + w)uduy — 131(—u? + 2uz)u} —
102u1us + 625(us + w)2u2 + 700(uy + W)us +
591(—u? + 2uz)utui — 1075(—uf + 2us) (ug + W)usus —
107(—u? + 2uz)?ud — 1875(— u? + 2u3) (ug + w)* +
285/2(—u? + 2uz)?u3 — 10(—u? + 2uz)3u; )x°® +
(—47/4ud 4 302uSu3 — 535(uy + W)ujus — 61/2(—u? + 2uz)u’ +
55(—u? 4 2u3)3u? — 750(ug + w)ud + 600(uy + W)uiul +
550(—ui + 2ug)uiuj + 1875(us + w)?u3 + 45/4(—ui + 2uz)?uf —
325(—u? 4 2u3)(ug + wW)uiug — 135(—u? + 2usz)us —
2500(—u? 4 2u3)(ug + w)>uq + 240(— u% + 2u3)*ugu3 +
250(—u? + 2u3)?(uy + w)up — 180uus + 25( u? + 2uz)t)x? +
(uf +183/2uSu3 — 115(ug + W)ujug + 14(—u? + 2uz)ul — 95uduj +
50(ug 4+ w)2ut — 165(uy + w)uiud + 190(—u? + 2us)uiul +
27u$ + 3000(ug + W)2ugus — 65(—u? + 2us)(ug + W)usug +
45(—u? + 2uz)*uf — 99(— u1 + 2uz)uyuy — 6250(uy + W) ug +
625(—u? + 2u3)(ug + w)?u? — 225(—u? + 2us3)(ug + W)us +
187/2(—u? + 2us)?uius + 50(—ui + 2u3)? (ug + W)usus +
52(—u? 4 2u3)3u? + 1250(—u? + 2u3)?(ug + w)? —
5(—u? + 2uz)3u3 + 20(—u? + 2uz)tu; )x? —
96(ug + w)ubug — 27/4uful + 158(uy + W) 2 4+ 2uf® +
52(—u? 4 2uz)uius 4 1950(uy + w)?utu3 + 38(—uf + 2uz)*uf —
356(—u? + 2uz)(ug + w)ujug + 500(—u? + 2u3)?(ug + w)2u; —
27/2(—u? + 2uz)uiuy + 17u1u2 3750(uy + w)3ujus +
14(—u? 4 2uz)u’ — 315( u? + 2us3)(ug + wW)ugus + 3125(uy + w)? +
53(—u? + 2u3)*udu3 4+ 1125(—u? 4 2u3)(ug + w)?ui —
460(—u? + 2u3)?(ug + W)uiug + 50(—u? + 2uz)3u] —
27/4(—u? + 2uz)?us + 108(ug + w)us — 299(uy + wW)uius +
18(—u? + 2uz)uius — 200(—u? + 2us3)®(ug + W)ug +
32(—u? 4 2u3)*u? + 550(—u? + 2u3)(ug + w)2ud + 8(—ut + 2u3)®
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Defining the ideall = (P, P,) C C[z,w], explicit computations show that indeed the
subalgebras o€z, w|/I generated by thé,, havepreciselythe same structure constants
(3.3.14).

The perturbative limit for type A Lie algebras

We have claimed in section 2.1 that the nonperturbative prepotehtiatplicitly defined
through

oF
ap = % /\SW a— = )\SW (3.4.1)
Ag a; B;

can be expanded in terms of the parameptes

F = Felass + fpert + Z Ck(a)ﬂk (342)
k=1

Here F..s5 IS @ quadratic polynomial in the; which is irrelevant for the WDVV equations,
and 7., is the perturbative limit that was studied extensively in chapter 2. Following [15]
we will show explicitly in the case of Lie algebrdyy that the nonperturbative prepotential is
of the form (3.4.2) and the perturbative part is identified as

-1%~ 2 (ai — a;)*”
fpert = T (ai - aj) 1Og T (343)
ij=1

where) ", a; = 0. This is the expression appearing in (2.2.3).

We start by fixing the choice of cycles for the hyperelliptig; curve (3.1.4). The branch
points of the curve, viewed as definig¢x), are given by

N+1
W(z) £ 2u = H (x—e)E2u=0 (3.4.4)

i=1

where) . e; = 0. Denoting the branch points by, we let the cycled, run on the first

sheet around the branch cut frarp to z;7. This gives us the cycled,, ..., Ay. We define

By, by the cycle running fronx;_ , to x; on the first sheet and back from to zy_, on

the second sheet. The Seiberg-Witten differential, whose period integrals around these cycles
we will calculate, is given by (3.1.8)

aW'dx

Asw = r—s
Wy/1— 4

where we forget the terfvog(2)dz because it doesn’t contribute significantly to the period
integrals. In the limity — 0, the branch cut fromx, to ;" shrinks to the single point.

The cycle Ay is not affected by taking this limit, since the homology class determines the
outcome of the period integrals and therefore we can keep the cycle fixed. So we can make
an expansion of the period integkal in powers ofu, by expandinghsy,. This is done by a

(3.4.5)
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Taylor series expansion imwhich converges for small because the cycld, never comes
close to the points; whereW is small. The expansion ofsy, reads

= m TW'dz
Asw = Z am (2p)? e (3.4.6)

m=0
where

L(m+3)

T(3)(m +1) (3.4.7)

Ay =

This reduces\sy, to a rational differential on a sphere with punctures atdheand we
can evaluate the period integral with the Cauchy residue theorem. The expansipiisof
therefore

ay

d 'd
?{:cW x+zam2u2m aW'dx

W W2m+1
m>1 Ak
N+1
1 T dzx
_ T DYMCHELY gy ] S48 [
ﬁk —r—e m§>:1 2 4, 2m wz2m] - W2m
= ey + Z (2 2"’}1{ W2m (3.4.8)
m>1

Here the residue of the first term was calculated,inThe residue of the second term can be
found in closed form by noting that

1 N 1 )2m H ( 1 - : 2m Sk(@)™ =

w2m o (z—ey o T —e;)?™  (r—ey)

i 1 O*mIPSM (= ey,)
(2m +p)! Qx2m+p

(z —er)? (3.4.9)

p=—2m

where we used a Taylor series expansiobff(z) = | |#k —(T_el_)gm aroundr = ¢,. We
: J
find the residue to be

_ _am g om0 Su(en)™
ar=er+ Y S 1] (2u) penT (3.4.10)

m>1

The evaluation of the period integrals over tBecycles is more delicate. Since these cycles
run fromzy; | to z;” on one sheet and back again on the other, we cannot take the limit
@ — 0 and at the same time avoid the poiaiswherel/ = 0. The expansion (3.4.6) of
Asw is therefore not valid because the expansion paran%tcaan become big. To work
around this problem, we introduce an auxiliary paramétand consider thé-dependent

integral
!
f _ oWidr (3.4.11)
Bk

/1 2§M

100



The idea is to use the fact that the differential has a convergent power series expagdan in
small values of¢| and normal values g, do some manipulations on the integral and then

make an analytic continuation o= 1 in the end. This should give a valid series expansion
of br in L.

The integral ofAgy on the second sheet equals the integral on the first sheet because on the

second sheely W2 —4p2 = —W /1 — % (which gives a minus sign) and the orientation
of the integration curve is reversed (which gives another minus sign). Therefore

_ 2/ :UW dx
TN 41 %% /1 25#«

N+1

B om m W' dx xdx
2 Z amf (2 W2m+1 - / T — e
TN 41 m=0 TNt i=1 ¢
9 Z o §2m(2’u)2m/ L1 _d [L] + _dz_ (3.4.12)
P m z;\url 2m W2m W2m 4.

Whenever we calculate parts of this integral explicitly, we will only keep the terms from the
upper boundary, , remembering that there is a similar contribution fref, , accompa-
nying it. Since the branch point equation (3.4.4) giVEéz, ) = 2, we find that

N+1
be(§) =2(N + 1)z, +2 Z ejlog(z, —e;j)—
j=1

) Z 2m — +2 Z Qm 2m 2m “k dmm (3413)

W2
m>1 m>1 TN+1

The third term contains a series§rwhich converges fof = 1, so the analytic continuation

for that term is trivial. To evaluate the last term, we use an expansiqﬁ%af in terms of
partial fractions

1 N+1 0
=3 Y QP —e) (3.4.14)
=1 p=—2m

Using again the Taylor expansion (3.4.9) we recognize the coeﬁi(ﬂgﬁf@) as

(2m) 1 62’”“’&(@1)”’
e 2mp)l 9t

(3.4.15)

This expansion ofW allows a separation of the last term in (3.4.13) according to the
powers(x — e;)P occurring in it. For example, the series for= —1 converges fo = 1
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because it equals
N+1

zy 1 m o anflsl(el)m B
22; (A iU—a) E:Qndwn—lﬂgﬂ) et T

;7+1 m>1

N+1
2 Z (a; — ) log(z, —e) (3.4.16)
=1

For eacty, one can check [15] that the series convergeg fer 1. Moreover, one can show
that the terms fop < —2 can be expressed by power serieg:inTo see this, we note that
the terms(z,, — ex)PT1 ~ P+ which occur after the integration q{,ﬁ— are singular, but

on the other hand there are enough compensating teffiso soak up the singularities.

To show that (3.4.2) holds, the remaining task is to identify the part containing the pertur-
bative prepotential. Forgetting the terms that contribute to the classicaDgngparts, we
focus on the first three terms of (3.4.13) together withithe —1 part of the fourth term

N+1
Z = (2N +1) = 2log(2)) x, +2 > a;log(x; —¢;) (3.4.17)
j=1
where we have used the summation formplg, ., 5= = log(2). We remind the reader

once again that similar terms witk}, replaced byr_ , have been omitted. Using (3.4.4)
we rewriteZ,, as

Zi = (2(N +1) —2log(2)) z, + 2axlog(z, —er)+ QZ ajlog(z, —ej) =
J#k
(2(N 4+ 1) —210g(2)) z,, + 2ax log(2) + 2ay, log(p)—
2 Z ap log(z, —e;) +2 Z ajlog(zy —ej) =
J#k J#k
2(N + 1)z, + 2log(2)(ar — x;, ) + 2ax log(p) — 2 Z(a;C —a;)log(z, —e;) (3.4.18)
J#k

Using once more (3.4.4) together with (3.4.8) we can express everything in termsaf the
as follows

Zi = (2N +1) + 2log() ax — 2> _(ay, — a;)log(ay, — a;) + O(u) ~ (3.4.19)
J#k
Keeping only the terms of the perturbative part and reintroducing the contributions from the
lower bound of the integral, we end up with

2ay, log(p) — 2 Z(ak —aj)log(ar — a;j)—
J#k

2an11log(n) +2 Y (ani1 —aj)loglants —a;) (3.4.20)
iAN+1

We want to write this as the derivati\er% of the perturbative prepotential (3.4.3). There
is a technical complication (typical for the typey case) due t® . e; = 0 which implies
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351

ZN“ a; = 0. Substitutingay 1 = — Zf;l a; In Fpere We see that

i=1

d]:pert a]:pert a]:pert
— — 3.4.21
dak aak 8aN+1 ( )

Substituting (3.4.3) in this expression indeed gives (3.4.20) up to polynomials i} #ed

up to a redefinitionn — uhgv wherehg = N + 1 is the dual Coxeter number ofy. The
polynomials can be absorbed in the classical part of the prepotential. We conclude that, as
promised in section 2.1, the perturbative prepotential is the limit of the full prepotential under
w— 0.

Proposition 3.19. [15] In the limit 4 — 0, the full Ay prepotential can be written as

F= ]:class + fpert + Z Ck(a)//‘k (3422)
k=1

whereF qs is independent gf and polynomial in they;, and F,.,. equals the perturbative
prepotential (3.4.3), also considered in (2.2.3).

Prym varieties and the Adler-van Moerbeke problem

We recall the Adler-van Moerbeke question posed in section 3.1.2: the periodic Toda chain
for Lie algebrag has a Lax pair with spectral parameter for any irreducible representation
p of g. The flow of the system linearizes on the Jacobian of the spectral curve (3.1.20)
for the Lax operatorA(z). Since the Toda system itself is representation independent, the
question is whether the Liouville torus can be embedded in a natural way in the Jacobians
of each of the spectral curves. This question was answered positively for simply laced Lie
algebras in sections 3.1.3 and 3.2. There it was shown that there exists & Netygles and

N holomorphic forms whose periods over these cycles generate a submatrix of the period
matrix. Therefore they make up an abelian subvariety of dimenSiearank(g).

To give more background on this Adler-van Moerbeke problem, we discuss in this section
its solution purely in terms of representation theory of finite groups. This work was done
independently ofA" = 2 supersymmetric Yang-Mills theory, by mathematicians such as
Kanev [34], Merindol [52] and especially Donagi [17]. We start by decomposing the Jacobian
of a curve equipped with an action of a finite group on it. Then we show that in the case of
the Toda system, where the role of the finite group is played by the Weyl groydafany
irreducible representation gfthere is an abelian variety occurring in the decomposition of
the Jacobian variety of the spectral curve. This abelian subvariety is called the distinguished
Prym and it solves the Adler-van Moerbeke problem and is therefore the same as the one
which defines the prepotential.

Decomposition of Jacobians with finite group action

First we recall some elements of Riemann surface theory. Given a Riemann surédce
genusg, a divisor of degred is a formal linear combinatiod , n; P; of points P; in ¥ and
with numbersn; € Z such thaty |, n; = d. A principal divisor is a divisor of degree zero
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which consists precisely of the zeroes and poles of a meromorphic function, counting their
multiplicity. There is an equivalence relation between divisors, two divisors being equivalent
if their formal difference), m; P; (which is a divisor of degree zero) is a principal divisor.
This makes the divisor classes of degree zero into an abelian group which by the Jacobi
inversion theorem is isomorphic to the JacobiaiofThe isomorphism itself is given by the

map

Pi PL'
ZniPi Hzn (/P wl,...,/PO wg> (3.5.1)

whereP, is a fixed point of2. Now given a double covef : & — ¥ of Riemann surfaces,
one can construct a corresponding Norm mpon their Jacobians by

Ny (Z niPZ) = mf(P) (3.5.2)

The Norm map is surjective and the connected component of its kernel containing the identity
element is an abelian subvariety fic(X).

Definition 3.20. A classical Prym variety is the connected component containing the identity
of the kernel of the Norm mal; : Jac(X) — Jac(X) belonging to a double covef: 3 —

3} of Riemann surfaces. In terms of the gengra of the Riemann surfaces the Prym variety
has genug — g.

The Jacobianfac(i) splits into two parts: the preimage 8ti.c(X) and the Prym. An alter-
native way of looking at this splitting is to consider the involutiorn ¥ that is a result of

the double cover. This involution acts on the space of holomorphic differeiials by a
reducible representation which splits into irreducible ones

Q(E) = M1 ® I (&) M2 ® € (353)

Herel denotes the 1-dimensional trivial representatichenotes the also 1-dimensional sign
representation and th¥/; are the multiplicity spaces, counting how many times each of the
two irreducible representations occur§{X). This is the so-called isotypical decomposi-

tion of () into a direct sum of two spaces of dimensiang and M. The spacé)(X)

can of course be decomposed further into a direct sum of 1-dimensional subspaces but this
decomposition is not canonical. The previously found splitting of the Jacobian variéty of
corresponds precisely with (3.5.3), leading to an alternative definition of the Prym variety as
the part ofJac(i) which corresponds with the sign representation. This interpretation leads
to the definition of generalized Prym varieties.

Definition 3.21. Given a (Galois) covel: — 3./ for a finite groupG acting on¥., the
space of holomorphic differentials has a decomposition

QX)) = M; @ V; (3.5.4)

into isotypic pieces coming from the irreducible representations of the finite groupince
the space of holomorphic differentials can be identified with the tangent space of the Jaco-
bian, the Jacobian also has an isotypic decomposition

Jac(X) ~ @;Prym; ® V; (3.5.5)

6 This is also called Poincare’s irreducibility theorem with G-action [57].
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where thePrym,; ® V; are subvarieties of the Jacobian. Tieym, are called generalized
Prym varieties.

Note that the generalized Prym variety for the trivial representation correspondgawith /G).

The decomposition (3.5.5) is not quite an isomorphism but rather an isogeny. This means that
there is a surjective map frod‘uc(i) to @,; Prym,; ®V; with finite kernel. Isogenies give rise

to an equivalence relation between abelian varieties and (3.5.5) states that the two abelian va-
rieties on the left and right hand side are within the same equivalence class. Due to the equiva-
lence relation there has to be an isogeny going back, i.e. gmap Prym,®V; — Jac(X)

which is surjective and has finite kernel. This map is given by the sum map
p(vg, ., on) =01 + ... +on (3.5.6)

where-+ denotes the group operation on the abelian varieiy(3.).

Spectral and parabolic covers

Given an arbitrary representatignof g, we can consider the spectral curdg defined in
(3.1.20). Its Jacobian will decompose for several reasons: first of all, the representation is
in general reducible and this causes the curve to be reducible as well. Secondly, the weights
of the irreducible subrepresentatiopscome in Weyl orbits and each of these orbits gives

a connected componeii, of the spectral curve, labeled by the highest weighn the

orbit. Finally, the Weyl group acts ol and as explained in the previous section, this
causes the Jacobian to split. One of the problems in finding the isotypic components of this
decomposition is that there are infinitely maxy to consider. However, it is shown in [17]

that they fall into finitely many birational equivalence classes. We will now describe how this
comes about.

First we find another way of looking at th&,. Given the Lie algebrg and one of it weights,

we construct a coveg,, of g as follows. Recall that Chevalley’s theorem states that there is
an isomorphism between tiiginvariant polynomials on the Lie algeb€{g]“ and the Weyl
invariant polynomials on the Cartan subalgelatiy]'’'. This implies that there is a unique
G-invariant polynomial

Py : g — Clz] (3.5.7)
whose restriction to the Cartan subalgebra is the Weyl invariant polynomial
II @-w (3.5.8)
HEW X

This allows us to construct a covgy of the Lie algebrg for each weight\ by

o = {(g9,2) € g x C|Px(g)(z) = 0} (3.5.9)

Since there is a mag from P! to g taking z to its imageA(z) defined in (3.1.22) we can
pull back the covep, to a coverty, of P1.

Definition 3.22. Given a simple Lie algebrg, one of its weights. and the mapd : P! — g
we define the spectral covEn, as

Ex = {(z,2) € C*|P\(A(2))(z) = 0} (3.5.10)

105



Chapter 3 The full Seiberg-Witten prepotentials

In other words, in casel(z) is regular semisimple one can take one of its conjugate$

in the Cartan subalgebra and considgr to be the curve (3.1.24). In contrast to the infi-
nite number of spectral covers, we will now discuss a single cover called the cameral cover
together with rational surjective maps to each of the spectral covers. Consider a simple Lie
algebrag and its Cartan subalgebha The Weyl groupiV of g acts onh and we can con-
struct the coverr; : h — h/W. One can take the semisimple part of an arbitrary element

g € ginto h by conjugation, and we subsequently take its image ungéo define the map

Ty g — h/W.

Definition 3.23. The cove of the Lie algebrgy is defined by

a=1{(g9,h) € g x blma(g) = m1(h)} (3.5.11)

So a generic fibre over a point € g consists of a number df € h, one for each Weyl
chamber, which is conjugate tp

This cover has an action of the Weyl group on it. We can again use thedmdp! — g to
construct the pull-back of g, which is a cover oP! called the cameral cover.

Definition 3.24. The cameral covet — P! is defined by
2 ={((g,h),2) € § x P'A(2) = g} (3.5.12)

A generic fibre of this cover again consists of an element in each of the Weyl chambers, hence
the name cameral cover.

Since the Weyl group acts on the cameral cover, its Jacobian also has an isotypic decom-
position. In an attempt to find the decomposition for the infinite number of spectral covers
from the cameral cover, we will construct a natural rational map fibto 32, for each). If

this map were to be birational, then the Jacobians of the spectral covers would all have the
same isotypic decomposition. We will find that this is not the case, and then we go on to
construct a finite number of subcovetls of the cameral cover together with birational maps
from a spectral coveXl, to a correspondind p. Finally, we obtain the decomposition of the
Jacobians of th& p from the decomposition for the cameral cover.

Consider for each weight of g the mapj, : g — g x C given byjx(g,h) = (g, A\(h)). We
find thatPy o j, = 0 because

Py(ja(g, 1)) = Pa(g: A(h) = Pa(g)(A(0) = ] (@ = u(®)lo=ry = 0 (3.5.13)
HEW X

where we have conjugatedto obtain a Cartan subalgebra element. SiRge j, = 0 this
gives a surjective map, : § — g, which can be pulled back using to a covering map
Jy : ¥ — %,. Therefore the cover. contains all the®,. This rational surjective map is
however not birational becaudg is too big. We will see that certain intermediate covers
$ — Xp — P! are small enough to give birational maps. The will be defined for
each parabolic subgroup of the Weyl groupl?, thus giving a finite humber of birational
equivalence classes of spectral curves.

The Weyl group is generated by reflections in a set of simple rdot& parabolic subgroup
Wp of the Weyl group is a subgroup generated by reflections in a sutiset A. Taking
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an arbitrary weight\ of g, its stabilizer group is a parabolic subgrolpr. Defining the
subcovergp = §/Wp of g, it is easy to see that the mgp : g — g, factors throughyp
since is invariant undei?». We thus arrive at the restriction map : gp — gx. Pulling
back with A we obtain a surjective rational mafy : ©p — X, between covers dP'. The
original map.J,, could not be birational because the generic fibr&afver a pointz € P*
containg|W| points and that oE, contains less. But the restricted map can be (and in fact
is) birational since the number of points in a generic fibre is equal.

3,53 Accidental singularities

Now that we have found a birational mdp : ¥ — 3, we wonder when this map is an iso-
morphism. That this can happen was showngfer A in the fundamental representation in
section 3.1.2, where it was shown that is smooth and simply parametrizes the eigenvalues
of A(z). In caseX, is singular,J, cannot be an isomorphism becaise is smooth. As we
already noted in section 3.1.2,, will become singular whenevex andw\ accidently take
the same values for some regular semisimple eleménj. These singularities are called
accidental and their occurrence depends more on the wgigiein on the particular map
A(z). Following this reasoning, one obtains the following lemma.

Lemma 3.25 ([17]). For Jy : ¥p — X, to be an isomorphism, a necessary condition is that
A is the multiple of a fundamental weight.

So in factJy is usually not an isomorphism becausg is singular in regular semisimple
points. So our assumption made below (3.1.24) on the smoothn@sg isf not very rea-
sonable. Here we see how to amend it: we should consider its natural desingulaization
instead.

354 The distinguished Prym

We have argued why it's better to study the smooth parabolic caverisistead of the possi-

bly singular spectral coveds,. However, the parabolic covers no longer have a natural action
of the Weyl groug?” acting on them. So we cannot think of the splitting of its Jacobian as the
result of the Weyl group acting on the cover. However, by letting the parabolic Weyl subgroup
Wp act ony and dividing it out to obtairtp, we obtain the magp : 3 — Yp. We can

use this map to pull backac(Xp) to Jac(X) and intersect it with the isotypic components

of Jac( ). To see what happens, we can look at this intersection on the level of the tangent
spaces, i.e. the spaces of holomorphic differenti8) andQ(Xp). The holomorphic dif-
ferentials or p pull back toWp invariant holomorphic differentials ox, thus showing that

the intersection offac(Xp) with Prym; ® V; is Prym; @ (V;)"* where(V;)"* denotes

the Wp invariant subspace df;. This way one obtains a decomposition

Jac(Xp) ~ @;Prym; @ (V;)"" (3.5.14)

We now come back to the Adler-van Moerbeke question whether an abelian subvariety of
fixed genus sits inside the Jacobian of all spectral curves. If such an abelian subvariety exists
we will call it universal. We now see that this question is reduced to a question in finite goup
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theory, namely if there exists an irreducible representagjoof 1/ such that the dimension
of (V;)Wr is nonzero. This question was answered in [40],[41] and is formulated as follows.

Theorem 3.26. The generalized Prym variety corresponding with the reflection represen-
tation of the Weyl group has genus equal to rgrkand occurs with nonzero multiplicity
inside the Jacobians of all spectral curves, therefore it is universal. Moreover, this is the only
universal Prym variety if and only i is a classical Lie algebra.

This abstract formulation of the answer to the Adler-van Moerbeke problem is consistent
with the more concrete result found earlier in section 3.1.5. Instead of letting the Weyl group
act on the space of holomorphic differentials, we there had the dual picture where it acts on
the space of cycles. The special subsedofycles constructed there precisely transforms
under the reflection representation of the Weyl group, thus showing that it indeed occurs with
nonzero multiplicity.

The distinguished Prym as a Jacobian

The whole problem of the Jacobian of the spectral curve being too big to be the Liouville
torus can be avoided if the distinguished Prym variety (i.e. the Liouville torus) is itself the
Jacobian of some smaller curve. Indeed, the Prym is principally polarized so it very well
could be a Jacobian, but on the other hand it is known that not all Pryms are Jacobians [55].
For classical Lie algebras, the Pryms are indeed Jacobians. Fod fypigs is trivial because

the spectral curve for the fundamental representation has génasd the spectral curves
(3.1.28) for the other classical groups in the fundamental representation have an involution
x — —ux besides the hyperelliptic involutian — —y. Dividing out certain combinations of
these involutions gives the gends Prym variety as the Jacobian of a curve [17]. For other
Lie algebras, this rather ad hoc method involves trying to recognize involutions of spectral
curves for the simplest representation and figuring out whether or not the distinguished Prym
occurs as the Jacobian of one of the quotients. That this does not always work is shown in
the example of Lie algebr&s, also discussed in [17].

Let us recall the genukl spectral curve fofz75 in the smallest representation
2
3 (z — H) — 2% 4 2uab— {142 +z+ H] zt 4 [1} +2u (z + H)} z2 =0 (3.5.15)
z z z

We introduce the variables

w = z-+ r
z
r o= a°
Ce (oY)
t = =z (w —r? 4 %) (3.5.16)

which occur when one starts to divide out the symmetries of the curve. The curve written in
terms of the variables, t has genus two, and so it was suggested in [17] that its Jacobian is
the distinguished Prym. The curve is
4
P(r,t) = 3t% — 4r° + 47ty — gr?’uQ —12ru+r*v=0 (3.5.17)
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and its holomorphic differentials are given by

o oo
1 = P,

rdt
Wy = 2 (3.5.18)

and it is readily seen that these do not correspond to the derivatives of the Seiberg-Witten
differential (3.1.37). Therefore the Jacobian of this genus two curve is not the Liouville torus
of the Toda system fo&2. The question whether or not the distinghuised Prym is a Jacobian
for all simple Lie algebras remains unanswered.

109






Appendix A

The Seiberg-Witten curves for Eg and F,






Appendix A

This appendix contains data on the family of curves for Lie algelifasind Fy. The Eg

curve reads
_ 13 f 2 Iz _
Pg, = 3% (z+ S +ug)® — qr(x)(z + > +ug) + q2(z) =0
where the polynomialg; andg- are given by

@ = 2702 + 342u 2" + 162uiz" — 252up2 ™ + (26uF + 18u3)z”
—162uyugx® + (6uyuz — 27ug)x” — (30uduy — 36us)xS +

(27u3 — Yuyug)z® — (Sugus — buius )zt — Suyusr® — ugusr — ul,

1
@ = 5@ —pip),
p1 = 78210 + 60u a® + 14u%x6 — 33uqz® +
2u?,x4 — 5u1u2m3 — u4x2 — UsT — u%,
_ 10 8 2.6 5
p2 = 12277 4+ 12uy2° + 4ujx 12usx” +

U3x4 — 4u1uQ:r3 — 2u4:c2 + dusx + ug

The curve forFy on the other hand reads

Pp, = -8 (z+ 'u;)?ii—sl(x) (z—|— “2>2+52(:z:) <z+ ’f) +s3(x) =0

where thes; () are given by

si(z) = —6362° — 300u 2" — 48uq2z® — Buza® + 2uqz,
so(z) = —1682'® — 348u 2% — 276u; %2 + (—116u;® + 14uz)z*?
+(—92uy — 20u,t — 8u1u3)x10 + (—42ujuy — 6u12’LL3)CL'8
+(—4ug — Euﬁu;; — 2U32)$6 + (luSU4 — EUG’U,l)LLA
3 3 3 3 ’
s3(z) = 2%7 4 6urx® + 15u22% + (20ur® + uz)z?! +

(buq + duqug + 15u14)x19 + (6u12U3 + 12uiug + 6u15):c17 +

1 26
(—u32 + Bug + dugPus + ?u12u4 + u16)x15

3
19 4 2
+(zurdug + —ugur + ugtuz + —uzug + ~uzug)zt?
3 3 3 3
1 1 15
+(§u12u;;2 — §u14u4 — Zu42 + Buguy )t
1 4 1 13 13
+(§u6u?, — §U12U3U4 + ﬁu;ﬁ — €u42u1 + 2—7u6u13)x9
1 1 1 7
+(—§u32U4 — 5ol + gUet1Us — %U12u42)$7 +
1 1 1 1
(Eufu?, — 6u6u1u4)x5 + (—5—4U43 - mﬂ62)x3.
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Samenvatting

Er bestaat tot op heden geen algemene theorie voor het vinden van exacte oplossingen van
stelsels van pagie differentiaalvergelijkingen. Soms kan existentie en uniciteit van oplossin-
gen worden aangetoond via de stelling van Cauchy-Kovalevskaya, of kunnen oplossingen
expliciet worden geconstrueerd omdat ze tot een bepaalde klasse van vergelijkingen horen,
bijvoorbeeld de integreerbare vergelijkingen. In dit proefschrift bekijken we het Witten-
Dijkgraaf-Verlinde-Verlinde ofwel WDVYV stelsel van paite differentiaalvergelijkingen en

met name een generalisatie daarvan. Dit is een overbepaald stelsel van derde orde niet-
lineaire vergelijkingen. In het algemeen mag men niet verwachten dat een overbepaald stelsel
nog oplossingen toelaat, maar voor de (gegeneraliseerde) WDVV vergelijkingen is dit toch
het geval, wat de vergelijkingen reeds tot bijzondere maakt. De oplossingen die we zullen
bekijken en die het hoofdonderwerp van dit proefschrift vormen hebben hun natuurlijke con-
text binnen de zogenaamde Seiberg-Witten theorie, een fysisch model voor het beschrijven
van quarks en aanverwante elementaire deeltjes. Het feit dat we expliciete oplossingen kun-
nen construeren voor een ingewikkeld stelsel als WDVV maakt deze vergelijkingen tot heel
bijzondere.

De opbouw van dit proefschrift is als volgt. In hoofdstuk een worden de WDVV vergelijkin-
gen en hun generalisatieigiroduceerd. Er wordt uitgelegd hoe de vergelijkingen gezien
kunnen worden als de conditie om de derde orde afgeleiden van een functie op te vatten als
de structuurconstanten van een associatieve commutatieve algebra.

Hoofdstuk twee isén van de centrale hoofdstukken en bevat expliciete oplossingen van
zowel de gegeneraliseerde als de oorspronkelijke WDVV vergelijkingen. Deze oplossingen
hebben hun directe oorsprong in Seiberg-Witten theorie waar ze bekend staan onder de naam
perturbatieve prepotentiaal. Onderscheid wordt gemaakt tussen de vier-dimensionale prepo-
tentialen, die aanleiding geven tot oplossingen van de gegeneraliseerde vergelijkingen, en de
vijf-dimensionale prepotentialen die zelfs oplossingen geven van de oorspronkelijke WDVV
vergelijkingen. Met name de mogelijkheid om oplossingen te construeren voor elke simpele
Lie algebra is opmerkelijk en suggereert een dieper verband tussen de WDVV vergelijkingen
en Lie algebras, een verband dat nog niet goed is begrepen.

Hoofdstuk drie is het andere centrale hoofdstuk. Hierin worden de vier-dimensionale niet-
perturbatieve prepotentialen beschreven, die ook oplossingen zijn van de gegeneraliseerde
WDVYV vergelijkingen. Hoewel deze oplossingen niet expliciet kunnen worden gegeven in
termen van gesloten uitdrukkingen zijn ze toch zeer interessant. Ten eerste worden ze in een
bepaalde limiet gereduceerd tot de perturbatieve prepotentialen en zijn dus daarmee direct
verbonden. Maar meer nog dan dat zijn de niet-perturbatieve prepotentialen interessant omdat
ze onderdeel zijn van een prachtig geometrisch kader dat de oplossing geeft van Seiberg-
Witten theorie. Omdat een uitgebreide beschrijving van de natuurkundige Seiberg-Witten
theorie teveel tijd zou vergen hebben we ervoor gekozen om deze te reduceren tot zijn puur
wiskundige inhoud. Om toch te kunnen waarderen hoe bijzonder de prepotentialen zijn is
besloten ze in te bedden in de context van een integreerbaar systeem: de periodieke Toda
ketting. Dit systeem is nauw verwant aan Seiberg-Witten theorie en de constructie van de
prepotentiaal geeft het antwoord op een zeer belangrijke vraag voor de Toda ketting, namelijk
hoe zijn Liouville torus te beschrijven is.
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