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Voorwoord

In de Bommelverhalen van Marten Toonder komen twee wetenschappers voor: de geweten-
loze en machtswellustige professor Joachim Sickbock en de van oorsprong Duitse stads-
geleerde professor Zbygniew Prlwytzkofski. Om hun karakters te illustreren zal ik enkele
stukjes citeren uit het verhaal “De zonnige kijk”, waarin professor Sickbock een mislukte
poging doet om een kunstmatig intelligente levensvorm te ontwikkelen:

‘Alles is gereed,’ sprak hij tot zichzelf. ‘Daar ligt het chemisch element uit de vierde groep van het
periodiek systeem te wachten op de hyper-ontlading, die het zal omvormen tot de monade, die mij
voor de geest zweeft...’
...
‘Het is ergerlijk, dat men mij maar laat tobben zonder subsidie, terwijl ik de aarde zou kunnen
bevolken met een voorgevormde levensvorm.’
...
‘Glas,’ mompelde hij vol afschuw. ‘Mijn proef is mislukt! In plaats van een brein heb ik glas
gemaakt. En mijn transmutator is vernietigd, zodat ik het niet kan overdoen. Ei, hoe armzalig is
het leven van een miskend geleerde...’

De arme professor Sickbock moet voor de financiering van zijn onderzoek keer op keer een
beroep doen op de derde geldstroom (Olivier Bommel) en gaat daarbij zelfs zover dat hij
zijn onderzoek ombuigt naar een voor hem totaal oninteressante richting, in dit geval het
maken van goud. Dit dient alleen om in de uren die overschieten zich te kunnen richten op
zijn werkelijke onderzoek. Dit is tegenwoordig ook in het werkelijke leven het lot van vele
wetenschappers.

Overigens doet dit citaat mij denken aan de verarming van de huidige wetenschappelijke taal,
met name in theoretische hoge-energie fysica. Binnen deze tak van wetenschap wordt het
weinig toevoegende prefixhyper, dat in het citaat hierboven voorkomt, veelvuldig gebezigd.
Maar wat erger is, men kan in dezelfde zin het prefixsupertegenkomen wat notabene het-
zelfde betekent. Zo ontstaan uitdrukkingen als ‘het hypermultiplet van een supersymmetrische
quantumveldentheorie’. Het gebruik van deze twee prefixen had mijns inziens vermeden
moeten worden, maar ik vrees dat het kwaad al is geschied.

In contrast met Sickbock is daar de Rommeldamse stadsgeleerde Prlwytzkofski, die in het-
zelfde verhaal ook voor het voetlicht treedt:

Professor Prlwytzkofski zat in het laboratorium de krant te lezen om zich te ontspannen na de
doorwerkte nacht. Maar veel vermaak putte hij er niet uit. ‘Praw,’ mompelde hij. ‘Door nieuwer
gouddekking meer geld vervoegbaar. Afkoeling van financieel klimaat. Welk ener kinderij. Alsof
geld wichtiger is, dan duchtiger wetenschappelijker arbeid!’

Merk vooral de keuze op van het lidwoord inde doorwerkte nacht, suggererend dat dit meer
dan eens per week voorkomt. Het is duidelijk dat Prlwytzkofski een vaste betrekking heeft en
zich dus de luxe kan permitteren om zich toe te leggen op zuiver wetenschappelijk onderzoek.
Zonder enige andere motivatie dan zijn eigen nieuwsgierigheid kan hij onpartijdig onderzoek
doen en dat is natuurlijk hoe het zou moeten zijn voor iedere wetenschapper.
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Ikzelf voel mij meer verwant met Prlwytzkofski dan met Sickbock, en in dat licht vind ik het
prettig dat ik mezelf gedurende de afgelopen vijf jaar AIO (en geen OIO) heb mogen noemen.
We leven nu echter in een tijdsgewricht waarin de Sickbocks oprukken, het geld het wint van
de nieuwsgierigheid en dientengevolge het zuivere onderzoek met uitsterven wordt bedreigd.
Ei, ei.

De afgelopen vijf jaar die ik aan mijn promotie heb besteed zijn in meerdere opzichten avon-
tuurlijk geweest. Het is allemaal begonnen toen mijn vriend en wiskundestudent Rob me
voorstelde aan prof. Ruud Martini, die juist op dat moment op zoek was naar een fysicus met
de juiste kennis. Ik kan me nog herinneren dat de ongedwongen sfeer binnen de groep voor
mij een van de grootste aantrekkingspunten vormde om in Enschede te beginnen. Professor
Martini bleek gelukkig ook van het Prlwytzkofski-soort en met name door zijn liefde voor
het vak en zijn goede begeleiding is hij voor mij een groot voorbeeld geweest.

Tevens gaat mijn dank uit naar Paul Kersten, die de begeleiding van Ruud overnam toen hij
ziek was. Hij heeft zich meer dan gewetensvol van die taak gekweten en ik weet zeker dat
dit proefschrift er niet zou hebben gelegen zonder zijn hulp en vriendschap. Dankzij hem
heb ik ook contacten kunnen leggen met het ITEP in Moskou en ik bedank met name Andrei
Marshakov, Alexei Morozov, Andrei Mironov en Joseph Krasil’shchik voor de plezierige en
nuttige maand die ik in Moskou heb besteed.

Al mijn collega’s hebben gezorgd voor een prettige werksfeer, maar een aantal van hen wil
ik toch met name noemen. Ik bedank Gerard en Gerhard voor de prettige sfeer en de gezel-
lige spelletjesavonden en Jeroen, Jan-Kees, Johann, Eugene, Gerhard en Gerard voor hun
pogingen mij te leren bridgen in de lunchuurtjes. Diana stond altijd klaar voor secretariële
ondersteuning en een gezellige babbel. Sergei en Johan hebben lijdzaam mijn aanwezigheid
als kamergenoot ondergaan, hulde daarvoor.

Ik kan me nog herinneren dat Rob en ik al in de eerste maanden van mijn verblijf in Twente
uitrekenden wie er eerder klaar zou zijn: ik met mijn promotie of hij met zijn studie. Aangezien
hij al twee jaar bezig was, waren we het snel met elkaar eens. Gedurende de jaren hebben we
die prognose echter wat moeten aanpassen links en rechts... En nu dan ligt hier mijn proef-
schrift, na vijf jaar van hervonden vriendschap. Maar ik verheug me nu al op jouw afstuderen
en op de vele jaren vriendschap die we hopelijk zullen blijven delen.

Ik bedank ook al mijn vrienden en mijn ouders en zussen, die zich al die tijd hebben afgevraagd
waar ik in ’s hemelsnaam mee bezig was. Nou, jullie kunnen het nu lezen en je vergapen aan
al die ingewikkelde wiskunde. Maar belangrijker voor me is dat jullie mij begrijpen als mens
en me altijd hebben gesteund in wat ik doe.

Tot slot is daar Linda, mijn wonder op wielen, voor wie woorden slechts tekort kunnen
schieten. Dankjewel voor alles.
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Introduction

Partial differential equations (PDE’s) come in various sorts, classified for example according
to the order, the number of variables, whether the equations are linear or nonlinear, and
whether they are overdetermined, underdetermined or well-determined. A general theory
to find explicit solutions of PDE’s does not exist for any substantial class of equations, but
results can be obtained for restricted classes. A general result about existence of solutions
of PDE’s is the Cauchy-Kovalevskaya theorem, which in principal opens the possibility to
construct solutions of an initial value problem for the class of well-determined PDE’s, in
terms of power series. This theorem can be applied regardless of the order, the number
of variables or the (non)linearity. This theorem covers many important PDE’s arising from
physics, for example evolution equations (the heat equation, the KdV equation), the Laplace
equation, Maxwell’s equations and the Navier-Stokes equations.

In this thesis we consider a system of equations called the Witten-Dijkgraaf-Verlinde-Verlinde
or WDVV system. In the year 1991 it appeared in physics, more particularly in the stud-
ies of two-dimensional conformal field theory, where it was discovered by Witten [62] and
Dijkgraaf, E. Verlinde and H. Verlinde [16]. Roughly speaking, this system expresses the
condition for the third order derivatives of a function to be the structure constants of an as-
sociative, commutative algebra with a unit. The WDVV system defies a treatment with the
Cauchy-Kovalevskaya theorem: it is a system of highly overdetermined1 third order nonlin-
ear equations which can be defined for an arbitrary number of variables greater than or equal
to three. In fact, because of the overdeterminedness one might expect that no solutions exist
at all. One indication that the WDVV system is very special, is that it does indeed admit
exact solutions for any number of variables. For example, in one of the articles in which the
WDVV system made its first appearance [16], the authors gave a class of solutions for any
number of variables. These solutions are polynomial and were given for the finite dimen-
sional root systems ofADE type. Denoting the root space byV and the Coxeter group by
W , the variables then correspond to coordinates on the space of Coxeter orbitsV/W .

Within the mathematical community, the first to study the WDVV equations intensively was
Boris Dubrovin. Among other things, he has shown that the polynomial solutions can be
defined for any finite Coxeter group and he related them with the unfoldings of isolated sin-
gularities [19]. Moreover, he has shown that the WDVV equations admit a representation
in terms of a socalled zero-curvature form with a spectral parameter, see for example the
survey article [18]. This is an indication that the system is within a special class of PDE’s:
the class of integrable systems. There is a lot of confusion in the literature about the concept
of integrability, involving zero-curvature representations, conservation laws, symmetries, bi-
hamiltonian structures, the Painlevé test and so on. This topic will not be discussed in any
detail here. Among PDE’s, integrable systems are an exception in the sense that methods
exist to discuss explicit solutions. This then gives another reason to consider the WDVV
equations as something special.

A third reason to study the WDVV equations is that in the other article in which the equations
made their first appearance [62] it was conjectured that a certain function, appearing in the

1 The only exception is the WDVV equation for three variables, which is well-determined. In this
case Cauchy-Kovalevskaya can indeed be applied [18].
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theory of intersection numbers on the moduli spaces of curves, is a tau function of the KdV
hierarchy. This was later proven to be true by Kontsevich [36]. This function has a power
series expansion, with the zero order term satisfying the WDVV equations. It was later
shown that this zero order term itself is a tau function of the dispersionless KdV hierarchy.
This establishes a link between the WDVV equations and a well-known integrable hierarchy.

In the years after 1991, the role of the WDVV equations in mathematics became important
in enumerative geometry, within the context of quantum cohomology and Gromov-Witten
invariants, which are topological invariants of symplectic manifolds. In particular, the article
[62] considers the quantum cohomology of a single point. As another example, we mention
that it was shown [37] that the problem of finding the number of rational curves of degreek
passsing through3k − 1 generic points in the complex projective planeP2 is solved in terms
of a generating functionF depending on3 variables. This generating function satisfies the
WDVV equations.

In this thesis we will not go into the solutions of the WDVV equations coming from singular-
ity theory, nor solutions coming from quantum cohomology and Gromov-Witten invariants.
The main motivation for this choice is that in 1996, a generalized version of the WDVV
equations was introduced by Marshakov, Mironov and Morozov [45] and it is this general-
ized WDVV system that constitutes the main topic of this thesis. The physical context in
which these equations were found is calledN = 2 supersymmetric Yang-Mills theory, also
called Seiberg-Witten theory [59]. The generalized system is truely a generalization of the
original system, in the sense that solutions to the original equations are automatically solu-
tions to their generalized counterparts but the converse statement is false. The generalized
WDVV equations still retain many of the properties that make the study of the original equa-
tions worthwhile. For example we consider in this thesis constructions of explicit functions
for any number of variables, which are solutions of the generalized equations but not of the
original ones. Moreover, these solutions were shown to be tau functions for the Whitham
hierarchy corresponding to the periodic Toda chain, thus establishing a link between general-
ized WDVV equations and known integrable hierarchies. Finally, the generalized equations
themselves are indicated to be integrable since for example they have a zero-curvature rep-
resentation (albeit without a spectral parameter) and they allow the construction of explicit
solutions.

The introduction of the original and generalized WDVV equations together with some of their
background in physics as well as mathematics is the topic of the first chapter. The second
paragraph of this chapter contains a discussion of a continuous group of contact symmetries
which will be used in chapter three. These are symmetries of the generalized, but not of
the original equations and they have a clear physical meaning as electro-magnetic duality
transformations.

We then come to the main topic of this thesis, which is to discuss explicit constructions of
solutions of the generalized WDVV system coming from four and five-dimensional physics.
Typically these solutions, called prepotentials, can be expressed as an infinite power series
in an auxiliary parameter and the zero order term separately satisfies the equations. Such
zero order terms are called perturbative prepotentials. The construction of the perturbative
prepotentials is as follows: one starts with a base functionf(x), which depends on only one
variable. Then for every rankN root systemR with root spaceV one considers the function

F(a1, ..., aN ) =
∑
α∈R

f((α, a))
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Here the sum is over all rootsα, the elementa =
∑

i αiai ∈ V is expressed on a basis
of simple roots and(., .) is the standard Euclidean inner product onV . Taking the four-
dimensional base functionf4(x) = 1

2x2 log(x) we prove thatF satisfies the generalized (but
not the original) WDVV system for any root systemR. The five-dimensional case is more
problematic. Taking its base function

f5(x) =
1
6
x3 − 1

4
Li3(e−2x) =

1
6
x3 − 1

4

∞∑
k=1

e−2kx

k3

we show that the corresponding perturbative prepotential does not satisfy the WDVV system.
Due to a result in string theory, we are led to consider adding a cubic polynomial to the five-
dimensional perturbative prepotential. Keeping some free parameters in the cubic polynomial
leads only to partial succes, since solutions can now be found for certain combinations of the
parameters, but the relation between the solutions and the Coxeter groups we started from is
lost. This is because a generic Coxeter group does not contain a cubic invariant polynomial.
A careful study of the proof of the four-dimensional case leads us to add a cubic polynomial
involving a new variablea0 in such a way that the new prepotential is

F(a0, ..., aN ) =
∑
α∈R

f5((α, a)) + γ

[
1
6
a3
0 +

1
2
a0(a, a)

]
This prepotential is Coxeter invariant and contains only one parameterγ. We show that for
each crystallographical root system it is possible to find one value ofγ such that the cor-
responding prepotential satisfies the generalized WDVV system. Moreover, somewhat sur-
prisingly it even satisfies the original WDVV equations. To the best of our knowledge these
solutions to the original WDVV equations are new, and their construction is quite nontrivial
since the addition of a polynomial involving a new variable is usually expected to spoil the
WDVV equations. This discussion of the four and five-dimensional perturbative prepotentials
is the subject of chapter two.

Chapter three deals with the construction of the full (as opposed to the perturbative) prepo-
tentials, which is much more complicated. In this thesis we restrict ourselves to the four-
dimensional case. The starting point is the Seiberg-Witten data, consisting of three ingre-
dients. The first ingredient is a particular family of Riemann surfaces associated with any
simple Lie algebrag. The moduliui of the family are given by Weyl invariant polynomials
on the Cartan subalgebra ofg. The second ingredient is a special meromorphic differential
λSW , such that its first order derivatives with respect to the moduli are holomorphic forms
on the Riemann surface. The third ingredient is a special set of2N out of the possible2g
cycles on the Riemann surface, whereg denotes its genus. These special cycles are denotes
by A1, ..., AN , B1, ..., BN and satisfy the usual intersection relations.

The next step is to make a change of variables from the moduliui to the new variables

ai =
∮

Ai

λSW

which are period integrals ofλSW over the subset of special cycles of typeA. The period
integrals over the other special cyclesbi =

∮
Bi

λSW can be differentiated with respect to the
ai giving

Πij =
∂bi

∂aj
=

∮
Bi

∂λSW

∂aj
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The matrixΠij can be shown to be a submatrix of the period matrix of the Riemann surface,
hence it is symmetric. As a result the objectsbi can be integrated locally to a single function
F(a1, ..., aN ) which is called the prepotential.

We then go on to construct an associative, commutative2 algebra with unit out of the first
order derivativesωi = ∂λSW

∂ai
with structure constantsCk

ij . Recall that in order to show that
the prepotentialF satisfies the WDVV equations, it is necessary prove that its third order
derivatives give an associative, commutative algebra with unit. Identifying this algebra with
the algebra of forms leads to a relation between the third order derivatives ofF and the
structure constantsCk

ij . In this thesis, we consider two methods of proving this relation but
here we will sketch only one.

The WDVV equations are equivalent to the following relation between structure constants
and third order derivativesFijk

Fijk =
N∑

l,m=1

Cm
ij αlFklm

where theαl are a set of (possiblya-dependent) parameters. Since the first order derivatives
of F can be given in terms of period integrals ofλSW , these equations become a set of second
order linear equations which have to be satisfied byλSW .

Basically, proving the relation between structure constants and third order derivatives is now
reduced to finding solutions to a second order system of PDE’s known as a Picard-Fuchs
system. Such a reduction, from a third order to a second order system, can also be done in
a trivial way: since the WDVV equations for a functionF are homogeneous of order three,
one can also rewrite them as a system of second order equations on the first order derivatives
of F . In that case solving the equations means solving the second order system in terms of
N solutionsFi together with the condition that theFi integrate to a single functionF . The
main advantages of the construction of solutions described above is that we consider a second
order linear system (the Picard-Fuchs system), which can be rewritten in terms of a higher
order ODE with regular singular points. The standard theory of ODE’s can then be used
to show that there exist preciselyN independent solutionsFi =

∮
Bi

λSW . Moreover, the
possibility of integrating these solutions to a single function is guaranteed. This then proves
that the prepotentials satisfy the WDVV equations, which is the main result of chapter three.

Another topic in chapter three is the relation between the Seiberg-Witten prepotentials and an
integrable system called the periodic Toda chain. This is a dynamical system ofN particles
on a chain with interactions that can be defined for any rankN simple Lie algebrag. For such
systems, the classical notion of integrability involves the existence of preciselyN conserved
quantities in involution, so that one can make a change of coordinates to action-angle vari-
ables in terms of which the flow of the system linearizes on the Liouville torus. For the Toda
system, the conserved quantities can be obtained from a Lax representation. Given a Lax
representation with spectral parameterz, the spectrum of the Lax operatorA(z) is invariant
under the flow of the system. This spectrum is given by the characteristic polynomial

det [A(z) − x · I] = 0

This gives a family of Riemann surfaces, depending on the coordinates and momenta of the
particles, which is also invariant under the flow. It so happens that this family of Riemann

2 One takes the tensor product of holomorphic forms instead of the more common wedge product,
which makes the algebra commutative.
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surfaces is the same as the one occurring in Seiberg-Witten theory. Moreover, the Seiberg-
Witten differentialλSW turns out to be the action differentialpdq of the Toda chain. It can be
shown that the flow of the system linearizes on the Jacobian of the Riemann surfaces. Consid-
eration of dimensions suggests that the Jacobian contains a subvariety which can be identified
with the Liouville torus. Indeed the Seiberg-Witten differential together with the special cy-
cles select a2N -dimensional subvariety which plays this role and is called the distinguished
Prym variety. Moreover, the prepotential itself can be identified with a tau function of the
socalled Whitham hierarchy associated with the periodic chain. These relations between the
Seiberg-Witten prepotentials and the periodic Toda chain will be discussed in some detail in
chapter three.

Finally, in the case of Lie algebraAN we show how the prepotential can be expressed as
an infinite power series in an auxiliary parameter and the zero order term is shown to be
identical to the perturbative prepotential considered in chapter two. By this time, we have
two independent proofs that the perturbative prepotential satisfies the WDVV system: we
have a direct check in chapter two and we have shown that it is the zero order term of a
function that has been shown to satisfy the WDVV system in chapter three.

9





Chapter 1

The WDVV equations





Chapter 1

In this chapter we start by introducing the original and generalized WDVV
equations together with some of their physical and mathematical background.
We then discuss the existence of a continuous group of symmetries of the gener-
alized system which will be used in chapter three. Finally, we discuss the pos-
sibility to create a coordinate invariant formulation of the generalized WDVV
equations along the lines of Dubrovin’s work for the original system, which
leads to the concept of Frobenius manifolds. In particular, we explain why the
simplest attempt towards such a coordinate invariant formulation must fail for
the generalized system.

1.1 The original WDVV equations

The original Witten-Dijkgraaf-Verlinde-Verlinde equations were put forward in [62], [16].
They form a system of third order nonlinear partial differential equations for a functionF of
N variables.

Definition 1.1. Consider a functionF (t0, ..., tN−1) and matrices

[Fi]jk =
∂3F

∂ti∂tj∂tk
(1.1.1)

The original WDVV equations are given by

FiF
−1
0 Fj = FjF

−1
0 Fi i, j = 0, ..., N − 1 (1.1.2)

where the matrixF0 is required to be constant (ti independent) and invertible. This makes
the variablet0 a special one.

The system (1.1.2) is trivially satisfied forN = 1, 2 but extremely difficult to solve for higher
N . Nevertheless, we will find that this highly overdetermined1 system admits exact solutions
for all N . But before coming to the discussion of solutions, let us reinterpret the WDVV
system in terms of families of associative algebras. We introduce the objects

Ck
ij =

N−1∑
m=0

Fijm

[
F−1

0

]mk
(1.1.3)

which are symmetric ini, j and in generalt-dependent. In terms of the matrices[Ci]
k
j = Ck

ij

the WDVV system expresses the commutation ofCi andCj

[Ci, Cj ] = 0 i, j = 0, ..., N − 1 (1.1.4)

1 The number of independent third order derivatives grows with N3 while the number of independent
algebraic relations between them grows as N4.
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Chapter 1 The WDVV equations

Regarding theCk
ij as structure constants of an algebra

φiφj =
∑

k

Ck
ijφk (1.1.5)

we find that this algebra is commutative due to the symmetry ini, j and associative because
of (1.1.4). Moreover, the algebra has a unitφ0 becauseCk

0j = δjk. Since this is true for
all values of theti the structure constants in fact form a family of associative, commutative
algebras with unit. We therefore have the following

Proposition 1.2. A functionF (t0, ..., tN−1) satisfies the original WDVV equations if and
only if

• the matrixF0 (consisting of third order derivatives) is constant

• there exists anN -parameter family of commutative, associative algebras with unit,
whose structure constantsCk

ij are related toF through (1.1.3)

This alternative definition of the WDVV equations is why they are also called associativity
equations in the literature. The WDVV system is studied in many different contexts, and
often the family of algebras gets a natural interpretation there.

1.1.1 Example of a solution

The physical context in which the WDVV equations made their first appearance is a two-
dimensional topologicalN = 2 superconformal field theory [16]. Its Hilbert space of states
is finite dimensional and one of the main objects in the theory is the so-called superpotential
W (x) which in a particular example is a monomial

W (x) = xN+1 (1.1.6)

Quantum effects perturb the superpotential to2

W (x) = xN+1 + uN−1x
N−1 + ... + u0 (1.1.7)

and the physical Hilbert space isC[x]/I whereI is the ideal inC[x] generated byW ′ = ∂W
∂x .

Through an operator-state correspondence, the elements of the Hilbert spaceφi are also con-
sidered to be operators, and one expects an operator algebra

φiφj =
∑

k

Ck
ijφk (1.1.8)

since the repeated operatorφiφj is again an element of the finite-dimensional Hilbert space.
Indeed, by identifying theφi with representatives∂W

∂ui
= xi of the basis elements of the

quotientC[x]/I we find that they span the quotient algebra. Note that this is anN -parameter
family of commutative, associative algebras with unitφ0 = x0 = 1.

2 In mathematical terms, (1.1.7) is an unfolding of the type AN singularity
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We now introduce a nondegenerate bilinear form onC[x]/I through

(φ, χ) =
1

2πi

∮
W ′=0

φχ

W ′ dx (1.1.9)

This bilinear form is independent of the representatives chosen for the equivalence classes,
since terms containingW ′ clearly don’t contribute to the residue. We can use it to raise and
lower indices ofCk

ij and define

Cijm =
1

2πi

∮
W ′=0

φiφjφm

W ′ =
∑

k

Ck
ij(φk, φm) (1.1.10)

It follows that C0ij = (φi, φj). SinceCijm is totally symmetric in its indices, one may
wonder if there exists a functionF (u0, ..., uN−1) such that

Cijm =
∂3F

∂ui∂uj∂um

C0ij = constant (1.1.11)

If such a function indeed exists, then it satisfies the WDVV system due to proposition 1.2.
However, it is easily checked that neither equation in (1.1.11) holds. The way to define a
function which does satisfy the WDVV equations is to consider a change of variables from
ui to a particular setti which depend polynomially on theui. We mention the next result
without proof.

Proposition 1.3. [16] There exists a set of variablesti depending polynomially on theui with
the following properties: the derivativesφi = ∂W

∂ti
are a good set of generators for the ring

C[x]/I, and the corresponding structure constantsCijm(t) are the third order derivatives of
a functionF (t0, ..., tN−1) with respect to thet variables. Moreover, the nondegenerate bi-
linear form whose matrix elements areC0ij is constant. Therefore the functionF (t) satisfies
the original WDVV system (1.1.2).

In the physical context, this functionF plays the role of the free energy of the model.

Example 1.4. Among the models with superpotential (1.1.7) we give the free energy for the
one withN = 3

F (t0, t1, t2) =
1
2
t20t1 +

1
2
t0t

2
2 +

1
4
t21t

2
2 +

1
60

t51 (1.1.12)

The free energies for otherN are also polynomial.

1.1.2 Mathematical background

From a mathematical viewpoint, there is a number of reasons why the WDVV equations
are important. First of all a conjecture of Witten [62], later proven by Kontsevich [36],
states that the free energy for certain 2-dimensional superconformal field theories coincides
with the logarithm of a particular tau function of the KdV hierarchy. Moreover, one can
generalize the mathematical setting3 in such a way that the structure constantsCk

ij form the

3 In the above setting X is simply a point.
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Chapter 1 The WDVV equations

structure constants of a deformed or ‘quantum’ version of the cohomology ring of a compact
symplectic manifoldX. The functionF in those cases contains information about nontrivial
topological invariants ofX, called Gromov-Witten invariants. In fact,F is a generating
function for these invariants.

Example 1.5.As an example, we consider the quantum cohomology of the complex projective
line P1 and planeP2 [37]. The quantum cohomology ring for anyPd is given byC[x]/I
where the idealI is generated byxd+1 − e−t1 . In the case ofP1, the functionF satisfies the
WDVV equations trivially since it depends only on two variables

F (t0, t1) =
1
2
t20t1 + et1 (1.1.13)

The first nontrivial case isP2, whose functionF takes the form of a power series

F (t0, t1, t2) =
1
2
t0t

2
1 +

1
2
t20t2 +

∞∑
n=1

Nnt3n−1
2

(3n − 1)!
ent1 (1.1.14)

This functionF satisfies the WDVV equations if and only if the following relation holds

F222 = F 2
112 − F111F122 (1.1.15)

From this relation, one can find the numbersNn recursively

Nn = (3n − 4)!
∑

a+b=n

a2b(3b − 1)(2a − b)
(3a − 1)!(3b − 1)!

NaNb (1.1.16)

and the first few of them are

N1 = 1
N2 = 1
N3 = 12
N4 = 620
N5 = 87304 (1.1.17)

Nk receives the interpretation of the number of rational curves of degreek on P2 going
through3k − 1 generic points, thusF encodes topological data ofP2. If we rewriteF in the
form

F (t0, t1, t2) =
1
2
t0t

2
1 +

1
2
t20t2 + t−1

2 φ(t1 + 3 log(t2)) (1.1.18)

then it is proven in [18] thatφ and thereforeF actually converges for
Re(t1 + 3 log(t2)) < log

(
6
5

)
.

1.1.3 Integrable structure and the deformed Euclidean connection

Yet another reason to study the WDVV equations is that they are equivalent to the compat-
ibility conditions of a linear first order system with a parameter [18]. Such a realization is
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considered to be a strong indication of the integrability of the system, thus making it worth-
while to be studied. Consider the first order linear system(

∂

∂ti
+ zCi

)
ψ = 0 i = 0, ..., N − 1 (1.1.19)

wherez is an arbitrary parameter,ψ is anN -dimensional vector of functions and the matrices
[Ci]

k
j satisfy the following restrictions:

• The matrixC0 equals theN × N identity matrix

• All matricesCi aret0 independent

• There exists a constant matrixK such that

Fijm :=
∑

k

Ck
ijKkm (1.1.20)

are totally symmetric ini, j,m.

We then have the following result [18]

Proposition 1.6. The compatibility conditions of the system (1.1.19) are equivalent to the
WDVV equations (1.1.2).

Proof. The compatibility conditions are that∂i∂jψ = ∂j∂iψ. Writing this out we get the
following equation

(∂iCj − ∂jCi) z + [Ci, Cj ] z2 = 0 (1.1.21)

This second degree polynomial inz has to vanish identically, and sinceK is constant the
first order term ensures existence of a functionF whose third order derivatives areFijm. It
then follows from (1.1.20) that the matrixF0 = K of third order derivatives is constant. The
second order term in (1.1.21) then states that the functionF satisfies the original WDVV
equations.

As usual, we can reformulate the compatibility conditions as the zero-curvature conditions
of a connection. We introduce the deformed Euclidean connection∇̃ onCN in terms of the
coordinatesti as follows

∇̃i
∂

∂tj
=

∂2

∂ti∂tj
+ z

∑
k

Ck
ij

∂

∂tk
(1.1.22)

The compatibility conditions or zero-curvature relations then read[
∇̃i, ∇̃j

]
= 0 (1.1.23)

The flat coordinates, in terms of which the covariant derivative with respect to∇̃ is just the
ordinary derivative, are given by a set ofN independent solutions of(

∂2

∂ti∂tj
−

∑
k

zCk
ij

∂

∂tk

)
χ = 0 (1.1.24)
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Chapter 1 The WDVV equations

Note how the solutions of the first order linear system (1.1.19) as well as the second order
system (1.1.24) have a known dependence ont0. In fact, sinceC0 = I we find the simple
behaviour

ψ(t0, ..., tN−1) = e−zt0 ψ̂(t1, ..., tN−1)
χ(t0, ..., tN−1) = ezt0 χ̂(t1, ..., tN−1) (1.1.25)

Making a Fourier transform in thet0 variable we find that the WDVV equations are still
equivalent to the compatibility conditions of the first order linear system

(∂i + Ci∂0)ψ = 0 (1.1.26)

After this Fourier transform, the deformed Euclidean connection is no longer a connection.
Nevertheless, the second order equations(

∂2

∂ti∂tj
−

∑
k

Ck
ij

∂2

∂tk∂t0

)
χ = 0 (1.1.27)

will play an important role in the rest of this thesis, see for example section 3.3.3.

1.2 The generalized WDVV equations

In this section we introduce the main topic of this thesis, the generalized WDVV system
of third order nonlinear partial differential equations. Furthermore we provide some physi-
cal and mathematical background to indicate why it is interesting to study these equations.
Finally, we discuss a continuous group of symmetries.

The generalized WDVV equations were introduced in [45]

Definition 1.7. Consider4 a functionF (a1, ..., aN ) and matrices

[Fi]jk =
∂3F

∂ai∂aj∂ak

Kij =
∑

q

αqFqij (1.2.1)

Here theαq are possiblya-dependent, and they are chosen in such a way thatK is invertible
for generic values of the variablesai. The generalized WDVV equations is given by

FiK
−1Fj = FjK

−1Fi i, j = 1, ..., N (1.2.2)

Remark 1.8. The original WDVV equations require the existence of a special variablea0 and
a set of constantsαq = δq,0 such thatK =

∑
q αqFq = F0 is a constant invertible matrix.

For the generalized WDVV system we give up constancy of bothαq andK and thereforeK−1

need not exist for allai .

4 To distinguish between the original and generalized WDVV equations we switch from variables ti
to variables ai.
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We can reformulate the generalized WDVV equations in terms of a family of associative,
commutative algebras. We introduce the objects

Ck
ij =

N∑
m=1

Fijm

[
K−1

]mk
(1.2.3)

which are symmetric ini, j and in generala-dependent. In terms of the matrices[Ci]
k
j = Ck

ij

the WDVV system expresses the commutation ofCi andCj

[Ci, Cj ] = 0 (1.2.4)

Regarding theCk
ij as structure constants of an algebra

φiφj =
∑

k

Ck
ijφk (1.2.5)

we find that this algebra is commutative due to the symmetry ini, j and associative because
of (1.2.4). Moreover, the algebra has a unit

∑
q αqφq where theαq are the same as the

ones occurring in the definition ofK. Since this is true for all values of theai the structure
constants in fact form a family of associative, commutative algebras with unit. We therefore
have the following

Proposition 1.9. A functionF (a1, ..., aN ) satisfies the generalized WDVV equations if and
only if

• There is a matrixK =
∑

q αqFq which is invertible but not necessarily constant

• there exists anN -parameter family of commutative, associative algebras with unit,
whose structure constantsCk

ij are related toF through (1.2.3)

It may seem that the generalized WDVV system depends on the particular linear combination
K of third order derivatives, but this is not true. If the equations (1.2.2) hold for someK,
they also hold for any other invertible linear combination of third order derivatives. In this
sense the generalized WDVV equations are indeed a generalization of the original WDVV
system, which puts additional conditions onK. To show this we need the following result
[46]

Proposition 1.10. If the generalized WDVV equations hold for a particular invertible linear
combinationK of third order derivatives, it holds simultaneously for all other invertible
linear combinations.

Proof. Assuming that the generalized WDVV equations hold with linear combinationK =∑
q αqFq, we will prove that it also holds for̃K =

∑
q α̃qFq as long asK̃−1 exists. Using

Fi = CiK we write out

FiK̃
−1Fj = Fi

[∑
q

α̃qFq

]−1

Fj = Fi

[∑
q

α̃qCqK

]−1

Fj

= FiK
−1

[∑
q

α̃qCq

]−1

Fj = Ci

[∑
q

α̃qCq

]−1

CjK (1.2.6)
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Chapter 1 The WDVV equations

The WDVV equations corresponding toK state that theCi commute among each other and
thereforeFiK̃

−1Fj is symmetric ini andj. We conclude that the WDVV equations also
hold for K̃. The relation between the structure constantsDk

ij corresponding withK̃ andCk
ij

corresponding withK are given by

Ci = FiK
−1 = FiK̃

−1K̃K−1 = Di

∑
q

α̃qFqK
−1 = Di

∑
q

α̃qCq (1.2.7)

As a result, we can require theαq occurring inK to be constant: replacing theai occurring
in αq by some constant values still leads to an invertible linear combinationK. Note also that
although the choice ofαq does not affect the functionF , it does affect the structure constants
Ck

ij of the family of associative and commutative algebras. Taking an algebra on a linear
spaceV with basis elements{φi} and unite =

∑
q αqφq the algebra reads

φiφj =
∑

k

Ck
ijφk =

∑
k

Ck
ijφke (1.2.8)

We can make a new algebra whose structure constants are given by

φiφj =
∑

k

Dk
ijφkψ (1.2.9)

For an invertible elementψ =
∑

q α̃qφq theDk
ij are uniquely defined and form the structure

constants of an associative commutative algebra. The relation betweenCk
ij andDk

ij is given
by

φiφj =
∑

k

Ck
ijφk =

∑
l

Dl
ijφl

∑
q

α̃qφq =
∑

l

Dl
ij

∑
q

α̃qC
k
qlφk (1.2.10)

and corresponds precisely with a change ofK from
∑

q αqFq to
∑

q α̃qFq as described in
(1.2.7).

1.2.1 Physical background of the generalized WDVV equations and examples of solutions

The generalized WDVV system arose in the study of four-dimensionalN = 2 supersymmet-
ric Yang-Mills theory, also called Seiberg-Witten theory [59]. Although this theory is more
complicated than two-dimensional superconformal field theory, Seiberg and Witten managed
to solve the quantum low-energy behaviour exactly including the nonperturbative corrections.
The solution is given in terms of a holomorphic functionF(a1, ..., aN ) which is called the
prepotential5. This was a major breakthrough in quantum field theory, where results are often
limited to perturbation theory and nonperturbative results are hard to come by.

After the initial work of Seiberg and Witten, prepotentials were given forN = 2 supersym-
metric Yang-Mills theories depending on various inputs, such as the dimension of space-time,
the Lie algebrag and the particle content of the theory. The main objects of study in this the-
sis are the prepotentials for four and five-dimensional spacetimes, for any simple Lie algebra

5 Here N denotes the rank of the Lie algebra g of the gauge group G
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and for a fixed particle content6, and we will take some time here to sketch the physical back-
ground of the four-dimensional theory. A precise mathematical definition ofF is postponed
to chapters2 and3.

Quantum field theories typically give a good description of the point particles occurring in
the theory in terms of perturbation theory, but they give a bad description of the solitonic
objects occurring in it such as monopoles or instantons. The point particles are usually called
local and the solitonic objects nonlocal. In the case of four-dimensional pureN = 2 su-
persymmetric Yang-Mills theory the classical Lagrangian contains fields which describe the
(local) gluons and their supersymmetric partners. As a first step towards quantization one
finds a minimum of the potential and does perturbation theory around it. A typical feature of
N = 2 supersymmetric theories is that the classical potential has a whole family of minima,
parametrized by a Weyl invariant polynomialu on the (complexified) Cartan subalgebrah of
g. Due to the Higgs effect, the gauge symmetry is broken fromg down toh and the local
particles split into two groups: on the one hand there are the massive particles and on the
other there are theN massless local particles which are the gauge bosons for the gauge group
h. There is a massive particle for each positive rootα and its mass depends onu through a
local functiona(u) taking values in the Cartan subalgebra:

Mα = |(α, a(u))| (1.2.11)

Here(., .) denotes the Killing form.

This picture survives under quantization, i.e. there is still a family of quantum vacua and each
vacuum defines its own physics since the mass spectrum depends on it. In a theory which is
supposed to describe nature this is undesirable since there is no way to decide which vacuum
is the ‘real’ one seen in nature. However, the existence of this space of vacua actually helps
solve the low-energy physics. Since the theory has a mass gap it is expected that for low
energies the theory can be described by a Lagrangian containing only the massless particles.
The local functiona is such that for generic large values of|u| the massesMα are big and
perturbation theory is valid. In this regime it is found that the massless particles are all
local and they are the gauge bosons. All massive particles are charged under the broken
gauge grouph. A generic massive particle is described by electrical charge numbersne

i

and magnetic charge numbersnm
i and is called a dyon. These charge numbers generate an

elementq =
∑N

i=1 ne
i αi andg =

∑N
i=1 nm

i α∨
i in the root latticeΛg and the coroot lattice

Λ∨
g respectively. The massive local particles are purely electrically charged and the solitonic

objects acquire a magnetic charge. The mass of a dyon is given by

Mg,q = |(q, a) − (g,
∂F(a)

∂a
)| (1.2.12)

Here the local holomorphic functionF(a) is called the prepotential. The low-energy theory
is given by an effective Lagrangian containing only fields corresponding to the massless local
particles, and the information in this Lagrangian is equivalent to knowingF .

This description is however not valid for all values ofu. For certain values ofu nonlocal
particles can become massless, and they should be described in the effective Lagrangian of
the low-energy theory. Seiberg and Witten have succesfully used the concept of duality in
the solution of the low-energy behaviour: they suggest which solitonic objects can become

6 We consider only so-called pure Yang-Mills theory, i.e. only gluons and their supersymmetric
partners and no quarks
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Chapter 1 The WDVV equations

F1

F2

F3

F4

Figure 1.1: Sketch of a moduli space with different singularities where dyons become massless. Around
each singularity there is a patch of moduli space, each with its own prepotential describing the low-
energy physics there. Picture taken from [43]

massless and for which values ofu, and they use adifferent quantum field theory which
gives a good local description of that solitonic object in the neighbourhood of that point.
The objectsa andF can then change roles,a now describing masses of solitonic objects.
With some further effort, it is shown that bothai = (αi, a) and ∂F

∂ai
have monodromies

when going around the points in the Cartan subalgebra where additional particles become
massless. In fact, these points introduce singularities inC[h]W whereu takes its values,
and we will denote the total subset of such points by∆. The object(ai,

∂F
∂ai

) turns out to
be a section of a trivial vector bundle onC[h]W − ∆ whose structure group is a subgroup
of Sp(2N,Z), the symplectic group. The mass formula (1.2.12) is invariant under these
symplectic transformations. The identification of the structure group together with the local
data around the singularities translate the low-energy description ofN = 2 supersymmetric
Yang-Mills theory into a Riemann-Hilbert problem.

Starting in the regime for large|ai| where the functionF(a1, ..., an) describes the low-energy
physics, an element of the structure group will take us to a newãi regime, and since the
structure group is symplectic we can integrate the corresponding objectF̃i to a function
F̃(ã1, ..., ãN ) which describes the physics in the new regime (see also section 1.2.4). All
the local patches ofC[h]W − ∆ are therefore on equal footing, each having its own function
F describing the low-energy physics, see also figure 1.1. In chapter 3 of this thesis we will
show that all these functionsF satisfy the generalized (but usually not the original!) WDVV
equations. Indeed, the symplectic groupSp(2N,Z) is shown in section 1.2.4 to be a group of
symmetries of the generalized WDVV system and therefore allF satisfy the WDVV system
if one of them does. Furthermore, these prepotentials can be written as a power series in an
auxiliary parameterµ which serves as an energy scale in the physical theory. It is shown in
chapter 2 that if the prepotential satisfies the WDVV equations, the zero order term inµ also
does. This zero order term is called the perturbative prepotential, and as an example we give
here the perturbative prepotential corresponding to the Lie algebraAN .

Example 1.11. For the gauge groupSU(N + 1) with Lie algebraAN , we give the four-
dimensional perturbative prepotential

Fpert =
1
4

N∑
i,j=1

(ai − aj)2 ln
(
(ai − aj)2

)
+

1
2

N∑
i=1

a2
i ln

(
a2

i

)
(1.2.13)
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which satisfies the generalized WDVV equations (1.2.2). It can be checked that none of the
matrices of third order derivatives is constant, and thereforeFpert does not satisfy the origi-
nal WDVV system (1.1.2).

1.2.2 Mathematical background

The generalized WDVV system and corresponding Seiberg-Witten theory have made im-
portant contributions to various areas of mathematics. Here we touch upon some of these
contributions, thus placing the system in its mathematical context.

The original WDVV equations are related to integrable systems in the sense that certain
solutions to these equations are the logarithms of certain tau functions of the KdV hierarchy.
Similarly, the generalized WDVV system is related to the Whitham dynamics of the periodic
Toda chain since the Seiberg-Witten prepotentials are logarithms of tau functions of this
integrable hierarchy [22], [48]. Although we do not discuss the Whitham hierarchy in this
thesis, the periodic Toda chain and its relation with Seiberg-Witten theory is discussed briefly
in section 3.1.2.

Another reason to study four-dimensionalN = 2 supersymmetric Yang-Mills theory is that
its ‘twisted’ version7 plays an important role in the definition of so-called Seiberg-Witten
invariants of four-manifolds [63]. These invariants are equivalent to Donaldson’s invariants
but much simpler to calculate.

Finally, we note a connection between the generalized WDVV equations and the ‘tau function
of a curve’ [61], [38]. In this context it is shown [9] that the logarithm of a certain tau func-
tion τ(t0, t1, t̄1, ..., tN , t̄N ) of the dispersionless 2D Toda hierarchy satisfies the generalized
WDVV equations, when it is considered only as a function of the variablest0, t1, ..., tN .

1.2.3 Integrable structure of the generalized WDVV equations

In section 1.1.3 it was noted that the original WDVV equations are equivalent to the com-
patibility conditions of the first order linear system (1.1.19) with spectral parameterz. In
this section we prove a similar result, but without a spectral parameter, for the generalized
WDVV system. Consider the first order linear system

(∂i + CiD)ψ = 0 i = 1, ..., N (1.2.14)

whereD =
∑

q αq∂q is a first order differential operator with constant coefficients,ψ is an

N -dimensional vector of functions and the matrices[Ci]
k
j in combination withD satisfy the

following restrictions:

• The matrix
∑

q αqCq equals theN × N identity matrix

• There exists an invertible matrixK such that

Fijm :=
∑

k

Ck
ijKkm (1.2.15)

is totally symmetric ini, j,m.

7 A similar twist is made in the 2-dimensional supersymmetric conformal case
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Chapter 1 The WDVV equations

• The following relation holds

∂iK = D (CiK) (1.2.16)

We then have the following result (see also [54])

Proposition 1.12. The compatibility conditions of the system (1.2.14) are equivalent with the
generalized WDVV equations (1.2.2).

Proof. The compatibility conditions are that∂i∂jψ = ∂j∂iψ. Writing this out we get the
following equation(

∂iCj − ∂jCi − CiD (Cj) + CjD (Ci)
)
D + [Ci, Cj ]D2 = 0 (1.2.17)

This is an operator identity, so the first and the second order term inD have to vanish sepa-
rately. Writing out the first order term using the conditions (1.2.15) and (1.2.16) we find

0 = ∂iCj − ∂jCi + CjD
(
CiKK−1

) − CiD
(
CjKK−1

)
= ∂iCj − ∂jCi + Cj (∂iK) K−1 − Ci (∂jK)K−1 + [Cj , Ci]KD

(
K−1

)
= (∂iFj − ∂jFi)K−1 + [Cj , Ci]KD

(
K−1

)
(1.2.18)

Therefore the compatibility conditions of (1.2.14) boil down to

[Ci, Cj ] = 0
∂iFj − ∂jFi = 0 (1.2.19)

and due to equation (1.2.15) the matrixK is identified asK =
∑

q αqFq. The compatibility
conditions are thus equivalent to the generalized WDVV system.

The fact that the generalized WDVV system is equivalent to the compatibility conditions of a
first order linear system is a sign that indicates that the system may be integrable, even though
there is no spectral parameter in (1.2.14). This makes the system an interesting one to study.

1.2.4 Duality transformations and symmetries

In this section we consider two continuous symmetry groups of the generalized WDVV sys-
tem: a general linear group of classical symmetries (consisting of linear changes of the vari-
ables), and a symplectic group of contact symmetries (consisting of so-called duality transfor-
mations). For the symmetries of the original WDVV equations, we refer to [18] and restrict
ourselves to mentioning that the second symmetry group which we are about to discuss is not
a symmetry group of the original system.

Lemma 1.13. The generalized WDVV systems are invariant under linear changes of coordi-
nates.

Proof. We define a linear change of coordinatesãi =
∑

j

(
A−1

)j

i
aj and consider the new

function

F̃ (ã1, ..., ãN ) = F (a1, ..., aN ) (1.2.20)
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The third order derivatives ofF transform under linear transformations as if they were the
components of a(3, 0) tensor. From the definition of the structure constants of the associative
and commutative algebra

Ck
ij = Fijl

(∑
q

αqFq

)−1
kl

(1.2.21)

we find that the new objects

C̃k
ij = F̃ijl

(∑
q

α̃qF̃q

)−1
kl

(1.2.22)

are given by

C̃k
ij = Ar

i A
s
jFrst

(∑
q,s

α̃qA
u
q Fu

)−1
tv (

A−1
)k

v
(1.2.23)

where theα̃q are the transformedαq. Here we have used the summation convention that
indices occurring twice are summed over. The linear transformation is a symmetry if and
only if the transformed objects̃Ck

ij are the structure constants of an associative, commutative
algebra with unit. To prove that this is indeed the case, we decompose the transformation of
theCk

ij into two steps. First we consider the objects

Dk
ij = Fijl

(∑
q,s

α̃qA
s
qFs

)−1
kl

(1.2.24)

which are structure constants of an associative and commutative algebra with unit, see propo-
sition 1.10. Let this algebra be defined on the linear spaceV with basis{φi}. A linear change
of coordinates inV then leads to the new structure constantsC̃k

ij which are obtained from
Dk

ij by considering it to be a (2,1) tensor, i.e.

C̃k
ij = Ar

i A
s
jD

t
rs

(
A−1

)k

t
(1.2.25)

This constitutes the second step in the transformation of theCk
ij . The C̃k

ij are the structure
constants of the same algebra as theDk

ij (but with respect to a different basis inV ) and the unit

is given by
∑

q α̃qφq. Thus the transformed functioñF (ã1, ..., ãN ) satisfies the generalized
WDVV system.

We will now discuss a group of contact symmetries, which are different from classical sym-
metries in the sense that they do not only transform the variablesai, but also the function
F and its first order derivativesFi. We recall that from physics it is known thatai andFi

are to be treated on equal footing and together they form a section of a bundle with structure
groupG ⊂ Sp(2N,Z). It is therefore tempting to suggest thatSp(2N,Z) or a subgroup of
it is a group of contact symmetries of the generalized WDVV system. Indeed, we have the
following result [12], [14]
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Chapter 1 The WDVV equations

Proposition 1.14. LetM be a constant2N × 2N matrix. The transformation

ã1

.

.

ãN

F̃1

.

.

F̃N



= M



a1

.

.

aN

F1

.

.

FN



=

 A B

C D





a1

.

.

aN

F1

.

.

FN



(1.2.26)

is a symmetry of the generalized WDVV system if and only if

• det(M) 6= 0 andM ∈ GL(1,C) × C ⊗ Sp(2N,R) soM is up to a nonzero scalar
given by an element of the complexified symplectic group,

or

• det(M) = 0 and the third order derivatives of the transformed function are zero. We
will specify precisely when this non interesting case occurs.

Proof. For theãi to be a good set of coordinates we must havedet
(

∂ãi

∂aj

)
6= 0 and therefore

(A + BT )−1

must exist, whereT is the matrix given byTij = ∂2F
∂ai∂aj

. Since this condition depends on
the initial functionF (a), we consider it to be a condition for genericF . Next we require a
function F̃ (ã1, ..., ãN ) to exist whose first order derivatives are theF̃i, which is the same as
demanding symmetricity of the matrix

T̃ = (C + DT )(A + BT )−1 (1.2.27)

Symmetricity ofT̃ must hold for allT which come from a solutionF of the WDVV equa-
tions, and in particular for any symmetric constant8 matrix T . The symmetricity ofT̃ there-
fore leads to the following three equations

AT C = CT A

BT D = DT B[
(BT C − DT A)T

]T
= T (BT C − DT A) (1.2.28)

TakingT = I in the last of these equations implies thatBT C −DT A is a symmetric matrix,
which again according to (1.2.28) should commute with all constant symmetric matricesT .

8 If T is constant, it originates from a second order polynomial F which is trivially a solution of the
generalized WDVV system.
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Therefore it is a multiple of the identity. This leads to the following three conditions

AT C = CT A (1.2.29)

BT D = DT B (1.2.30)

BT C − DT A = λI (1.2.31)

If λ = 0 thendet(M) = 0 and we will treat this case later. The effect ofλ 6= 0 is that of a
scaling onai andFi with a factor

√
λ. Such a scaling is clearly a symmetry of the WDVV

system, so we can divide it out and setλ = −1. Thendet(M) = 1 and the three conditions
can be summarized in the single statement

MT ΩM = Ω (1.2.32)

where

Ω =

 ∅ I

−I ∅

 (1.2.33)

and thereforeM ∈ C ⊗ Sp(2N,R). Summarizing what we have done so far, we have seen
that requiring the existence of a new functioñF (ã) leads to the set of equations (1.2.29)-
(1.2.31). We will find that the WDVV system (1.2.2) puts no further conditions on the matrix
M . In order to show this, we will show that for nonzeroλ the third order derivatives ofF
transform as the components of a(3, 0) tensor, i.e.

∂F̃

∂ãi∂ãj∂ãk
=

∑
p,q,r

∂ap

∂ãi

∂aq

∂ãj

∂ar

∂ãk

∂F

∂ap∂aq∂ar
(1.2.34)

This transformation is the same as for a linear change of coordinates apart from the fact
that ∂ap

∂ãi
needn’t be constant. The proof of lemma 1.13 can then be used to show that the

transformation is a symmetry of the WDVV equations. In order to show that (1.2.34) indeed
holds, we calculate

∂T̃

∂ak
=

(
D − T̃B

) ∂T

∂ak
(A + BT )−1 (1.2.35)

Working out the first factor using (1.2.31) and symmetricity ofT̃ we find

D − T̃B =
(
AT + TBT

)−1 (
AT + TBT

) (
D − T̃B

)
=

(
AT + TBT

)−1
(
−λI + CT B + TDT B − AT T̃B − TBT T̃B

)
= λ

(
AT + TBT

)−1
(1.2.36)

and therefore writing out coefficients (1.2.35) becomes

∂T̃ij

∂ak
= λ

∑
p,q

∂ap

∂ãi

∂Tpq

∂ak

∂aq

∂ãj
(1.2.37)

which for nonzeroλ implies (1.2.34) up to a factor. Forλ = 0 we find that the third order
derivatives ofF̃ are zero and this function trivially satisfies the WDVV system. The con-
ditions (1.2.29)-(1.2.31) are therefore precisely the ones necessary to let the transformation
(1.2.26) be a symmetry of the WDVV equations. Forλ = 0 this symmetry will be trivial, for
λ 6= 0 some highly nontrivial symmetries can occur.
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Chapter 1 The WDVV equations

Remark 1.15. For transformations of the form (1.2.26) withdet(M) 6= 0 the condition that
there should exist a new functioñF (ã) already demandsM to be symplectic up to a scalar.
The generalized WDVV equations then put no further conditions onM whatsoever.

To illustrate that the symplectic transformations just discussed can range from very simple
to very complicated, we discuss two extremal situations, both playing an important role in
physics. First consider a symplectic transformation of the form A B

C D

 =

 I ∅
C I

 (1.2.38)

Such transformations are called perturbative duality transformations and they only change
the functionF by adding quadratic pieces to it. These do not contribute to the third order
derivatives and are obviously symmetries of the generalized WDVV system.

On the other hand, consider a transformation of the form A B

C D

 =

 ∅ I

−I ∅

 (1.2.39)

This transformation is called a nonperturbative or strong coupling duality transformation and
it is known to be equal to a Legendre transform

F̃ (ã1, ..., ãN ) = F (a1, ..., aN ) −
∑

i

aiFi (1.2.40)

Indeed, the matrix of coupling constantsT = ∂2F
∂ai∂aj

is transformed to−T−1 and the cou-
pling constants are inverted. If the original coupling constants were large, the new ones will
be small.

Since this Legendre transform is very complicated, we will restrict ourselves to a function of
only one variable9 to demonstrate what happens. Consider therefore a one-variable analogue
of (1.2.13)

F (a) =
1
4
a2 log(a2) − 1

4
a2 (1.2.41)

where the quadratic term has been inserted for later convenience. The transformed variable
is given by

ã =
∂F

∂a
= a log(a) (1.2.42)

This equation has infinitely many solutions fora, but only one of those equals 1 atã = 0.
This solution isa = ã

LW (ã) whereLW denotes Lambert’s W function, which is analytic at
zero. Using (1.2.40) we find that the transformed function equals

F̃ (ã) = −1
4

(
ã

LW (ã)

)2

log

((
ã

LW (ã)

)2
)

− 1
4

(
ã

LW (ã)

)2

(1.2.43)

9 A function of one variable trivially satisfies the WDVV system. The only purpose to consider it
here is to show what the transformed function looks like.
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1.3 Coordinate invariance and Frobenius manifolds

Roughly speaking, the WDVV equations express the fact that the third order derivatives of a
functionF (t) form the structure constants of an associative and commutative algebra. This
t-dependent family of algebras can be considered as a bundle over the spaceM where thet’s
live. It was Dubrovin’s idea to identify this bundle with the tangent bundleTM of M and
put the algebra structure on each of the tangent planesTtM . This idea leads to the concept
of a Frobenius manifold, a coordinate invariant description of the original WDVV equations.
In this section we will define what a Frobenius manifold is and why it is not to be expected
that a similar type of manifold can be introduced to describe the generalized WDVV system.

Definition 1.16. [18] A Frobenius algebra is an associative, commutative algebra with a unit
and a symmetric nondegenerate bilinear form(., .) on it such that

(ab, c) = (a, bc) (1.3.1)

Definition 1.17. A Frobenius manifoldM is a manifold with a Frobenius algebra structure on
each of its tangent planesTtM , depending smoothly on the pointt and moreover satisfying:

1. (., .) is a flat metric onM

2. The unit vector fielde is covariantly constant with respect to the Levi-Civita connection
associated with the metric

∇ue = 0 (1.3.2)

3. The tensor(uv,w) is symmetric due to the Frobenius algebra structure. It can be
differentiated and the result∇z(uv,w) is required to be symmetric in all vector fields
u, v, w, z.

Remark 1.18. As we will see, in terms of certain special coordinates a Frobenius manifold
leads to a solutionF of the original WDVV equations. In the usual definition of a Frobenius
manifold, there are additional requirements which lead to a certain quasi-homogeneity of the
functionF . To make the point of this section more clear, we have omitted these requirements.

A solutionF to the original WDVV system gives rise to a family of Frobenius algebras whose
symmetric bilinear form(., .) is given by(∂i, ∂j) = F0ij . We mention the following result

Proposition 1.19. [18] There exist coordinatesti on any Frobenius manifoldM such that
the objects

(∂i∂j , ∂k) (1.3.3)

are the third order derivatives of a functionF (t0, ..., tN−1) satisfying the original WDVV
equations. Moreover, all solutions to the original WDVV system are obtained in this way.

Proof. Due to the flatness condition 1, there exist coordinatesti in terms of which the metric
is constant. The covariant derivatives given through the Levi-Civita connection reduce to
ordinary derivatives and therefore condition 3 ensures existence of a functionF whose third
order derivatives are given by

∂3F (t)
∂ti∂tj∂tk

= (∂i∂j , ∂k) =
∑

l

Cl
ij(∂l, ∂k) (1.3.4)
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Chapter 1 The WDVV equations

In terms of the unit
∑

q αq∂q of the algebra, the metric is given by

(∂i, ∂j) =
∑

q

αqFqij (1.3.5)

and due to condition 2 theαq are constant and we can make a linear change of coordinates
(thus not losing constancy of the metric) in such a way that the metric is given byαq = δ0,q.
To see that all solutions to the original WDVV equations are obtained in this way, one can
easily construct a Frobenius manifold associated to each solution using the above formulas
for the metric and its Levi-Civita connection.

What we are interested in is the generalization of a Frobenius manifold to the setting of the
generalized WDVV system. We should therefore drop all conditions in the definition of a
Frobenius manifold which cause the metric to be given by the third order derivative ofF
with respect to a special coordinatet0.

Definition 1.20. A generalized Frobenius manifold is a manifold with a Frobenius algebra
structure on each of its tangent planesTtM , depending smoothly on the pointt and moreover
satisfying:

1. (., .) is a flat metric onM

2. The tensor(uv,w) is symmetric due to the Frobenius algebra structure. It can be
differentiated and the result∇z(uv,w) is required to be symmetric in all vector fields
u, v, w, z.

The two conditions again ensure existence of a system of coordinatesai such that there exists
a functionF (a) whose third order derivatives are given by

∂3F (a)
∂ai∂aj∂ak

= (∂i∂j , ∂k) =
∑

l

Cl
ij(∂l, ∂k) (1.3.6)

In terms of the unit
∑

q αq∂q of the algebra, the metric is given by

(∂i, ∂j) =
∑

q

αqFqij (1.3.7)

and equation (1.3.6) is equal to (1.2.3). Therefore the functionF satisfies the generalized
WDVV system. But although any generalized Frobenius manifold gives rise to a solution
of the generalized WDVV equations, the converse statement is false because the linear com-
binationK =

∑
q αqFq occurring in the generalized WDVV system is not required to be

constant, whereas a generalized Frobenius manifold does have this condition due to the flat-
ness of the metric. Of the three main types of solutions to the generalized WDVV system
that we will study in this thesis, two in fact can be obtained from generalized Frobenius man-
ifolds. These are the four- and five-dimensional perturbative prepotentials studied in chapter
2. For the other type of functions, studied in chapter 3, we do not have closed formulas and
it is difficult to determine whether there exists a constant linear combination of third order
derivatives. There is however nothing in the physical context nor in the construction of these
functions that would suggest that such a combination exists [47].

We conclude that the generalized WDVV equations are probably not described by the most
straightforward generalization of a Frobenius manifold, as introduced in definition 1.20. We
will not pursue the coordinate invariant formulation of the generalized WDVV system any
further.
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Chapter 2

This chapter deals with several perturbative prepotentials which are obtained
in a certain limit from the full prepotentials of four and five-dimensionalN = 2
supersymmetric Yang-Mills theory as discussed in section 2.1. We will restrict
ourselves to pure Yang-Mills theories (describing gluons and not quarks) and
find in section 2.2 that the perturbative prepotentials of the four-dimensional
theory satisfy the generalized WDVV system. The five-dimensional prepoten-
tials discussed in section 2.3 are more problematic, in the sense that they do
not satisfy the WDVV equations. This problem can be overcome by introducing
an extra variablea0, which unexpectedly turns the prepotentials for all gauge
groups into solutions of the original WDVV equations for the expanded set of
variables, witha0 playing the role of the special variable. Finally in section
2.4 we will discuss the role that certain physical parameters, viz. the energy
scale and compactification radius, can play as new variables.

2.1 Perturbative limits

The solutions to the WDVV system coming from Seiberg-Witten theory typically depend on
an energy scaleµ. Despite its importance within the physical context,µ will play the role of
an auxiliary parameter as far as the WDVV equations are concerned1. Whenever a solution to
a system of linear differential equations can be written as a formal power series in a parameter
µ, then the term of order zero in this expansion also satisfies this system. We will call such a
zero order term a perturbative limit. We will now show explicitly that a perturbative limit of
a solution of the nonlinear WDVV system also satisfies this system.

Suppose that the full solution and therefore the matrices of third order derivatives can be
written as formal power series in a parameterµ

F (a1, ..., aN ) =
∞∑

p=0

F pµp = F 0(a1, ..., aN ) + F 1(a1, ..., aN )µ + ...

[Fk]lm =
∞∑

p=0

[F p
k ]

lm
µp (2.1.1)

The inverse of a matrix of third order derivatives can also be expressed as a formal power

1 The possibility to treat µ as an additional variable for perturbative prepotentials will be considered
in section 2.4
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Chapter 2 Perturbative prepotentials as explicit solutions

series by using the geometric series

[Fk]−1 =
(
F 0

k

(
1 +

[
F 0

k

]−1
F 1

k µ + ...
))−1

=
∞∑

q=0

(
−

∞∑
p=1

[
F 0

k

]−1
F p

k µp

)q [
F 0

k

]−1

=
[
F 0

k

]−1 − [
F 0

k

]−1
F 1

k

[
F 0

k

]−1
µ + O(µ2) (2.1.2)

Substituting these power series into the WDVV system (1.2.2), we find immediately that the
perturbative limitF 0 satisfies the WDVV equations separately. This is not true in general for
F 1, F 2 etcetera. As a counterexample, we will considerF 1 (the one-instanton correction) for
the simplest case of a Seiberg-Witten prepotential, namely for four-dimensional pure gauge
theory withAN gauge group. In this caseF 1 is given by (see e.g. [15])

F 1 =
N∑

i=1

1
a2

i

∏
j 6=i(ai − aj)2

+
N∏

j=1

1
a2

j

(2.1.3)

We have checked explicitly for smallN that it does not satisfy the WDVV system.

We have seen that perturbative limits of solutions to the WDVV equations are solutions them-
selves. Therefore if we can prove that the full prepotentials satisfy the system, we need
not prove the same statement for their perturbative limits. There are however various rea-
sons to study the perturbative limits in their own right. For one thing, they can be written
down explicitly, in contrast to the full prepotentials. Furthermore, for the fact that the four-
dimensional perturbative prepotentials satisfy the WDVV equations one can give a proof
which makes the Lie algebraic background particularly clear. By studying this proof we can
overcome the difficulties arising in the five-dimensional context.

We will now describe the perturbative limits of prepotentials for pure Seiberg-Witten theory.
For any simple Lie algebrag of rankN , consider the following function

F (a1, ..., aN ) =
∑
α∈R

f((α, a)) (2.1.4)

wherea = a1e1 + ... + aNeN in terms of a basis{ei} of the root spaceR of g. The
bracket(., .) represents the Killing form on the Cartan subalgebra ofg. We will call f the
base function of the prepotentialF and the respective base functions for the four and five-
dimensional physical theories are

f4(x) =
1
2
x2 log(x) (2.1.5)

f5(x) =
1
6
x3 − 1

4
Li3(e−2x) =

1
6
x3 − 1

4

∞∑
k=1

e−2kx

k3
(2.1.6)

In the process of proving that various prepotentials satisfy the WDVV system (1.2.2), it is
very convenient to make a suitable choice for the linear combinationK of third order deriva-
tives ofF . In the four-dimensional case we can take it to be the Killing form, whereas in the
five-dimensional theory this is no longer possible. Other choices are then required to make
K manageable, e.g. constant or diagonal.

The four-dimensional perturbative prepotentials are discussed in detail in section 2.2. Section
2.3 contains a discussion of the problems associated with five-dimensional prepotentials and
finally section 2.3.2 resolves these problems in a natural way by adding an extra variable.
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2.2 Four-dimensional perturbative prepotentials

All perturbative prepotentials of four-dimensional pureN = 2 supersymmetric Yang-Mills
theory are given by substituting into (2.1.4) the following base function

f4(x) =
1
2
x2 log(x) (2.2.1)

so that its third order derivative equals

f ′′′(x) =
1
x

(2.2.2)

The Lie algebraic structure together with this particularf ensure that the functionF (a1, ..., aN )
satisfies the WDVV system (1.2.2). As a matter of generalization, we can even take any root
system associated to a Coxeter group to replace that of the Lie algebra.

Theorem 2.1. [49] For any root systemR of rankN , the function

F (a1, ..., aN ) =
1
2

∑
α∈R

(α, a)2 log((α, a)) (2.2.3)

satisfies the WDVV system. Here the bracket(., .) stands for the standard Euclidean inner
product on the root space. In caseR is the root system of a Lie algebra, this bracket equals
the Killing form.

Proof. For three reasons we will adapt the proof in [49]. First, we no longer have to differ-
entiate between long and short roots so that the proofs for simply laced and non simply laced
Lie algebras become the same. Furthermore the adapted version allows the generalization
to arbitrary root systems. Finally, the proof given below can easily be adapted to suit the
five-dimensional situation.

The third order derivatives ofF are given by

Fijk =
∑
α∈R

1
(α, a)

(α, ei)(α, ej)(α, ek) (2.2.4)

where we have taken a basis{e1, ..., eN} for the root space. A natural choice for the matrix
K is

K =
N∑

j=1

ajFj (2.2.5)

where we recall that the notationFj stands for a matrix of third order derivatives

(Fj)kl =
∂3F

∂aj∂ak∂al
(2.2.6)

Now the matrixK becomes

Kkl =
∑
α∈R

(
∑

j(α, ej)aj)(α, ek)(α, el)
(α, a)

=
∑
α∈R

(α, ek)(α, el) (2.2.7)
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Chapter 2 Perturbative prepotentials as explicit solutions

K is the matrix of a bilinear form on the root spaceR. Applying an elementw of the Coxeter
group onR, we find

Kkl →
∑
α∈R

(α,wek)(α,wel) =
∑
α∈R

(wα, ek)(wα, el) = Kkl (2.2.8)

and since all bilinear forms which is invariant under the Coxeter group are proportional to the
Euclidean metric, we conclude thatK is the matrix of the Euclidean metric in the basis{ei}.
In the case of a simple Lie algebra, this is the matrix of the Killing form.

Taking{ei} to be an orthonormal basis2, the left hand side of (1.2.2) becomes∑
k,l

Fijk

(
K−1

)
kl

Flmn − Fmjk

(
K−1

)
kl

Flin =
∑

k

FijkFkmn − FmjkFkin

=
∑

α,β∈R

(α, β)(α, ej)(β, en) [(α, ei)(β, em) − (α, em)(β, ei)]
(α, a)(β, a)

(2.2.9)

Because this expression is antisymmetric inj andn, it is equal to

1
2

∑
α,β∈R

(α, β)
(α, a)(β, a)

[(α, ei)(β, em) − (α, em)(β, ei)]×

[(α, ej)(β, en) − (α, en)(β, ej)] (2.2.10)

In caseα = β, the contribution to (2.2.10) is zero. But ifα 6= β the reflections in these two
roots generate a nontrivial Weyl group elementσασβ = w. Thus we can split the sum in
(2.2.10) into these Weyl group elements∑

w∈W

∑
σασβ = w

α, β ∈ R

(α,β)
(α,a)(β,a) [(α, ei)(β, em) − (α, em)(β, ei)]×

[(α, ej)(β, en) − (α, en)(β, ej)]

(2.2.11)

To prove that this expression equals zero, we will use the following Dunkl identity

Proposition 2.2. [20] For any root systemR with corresponding Coxeter groupW we have∑
σασβ = w

α, β ∈ R

B(α, β)
1

(α, a)(β, a)
= 0 (2.2.12)

for any bilinear formB satisfying the following conditions

B(α, β) = B(β, α) (2.2.13)

B(σγα, σγβ) = B(α, β) ∀γ ∈ R ∩ {Rα ⊕ Rβ} (2.2.14)

2 Changing the basis of the root space amounts to a linear change of the variables ai, under which
the WDVV system is invariant
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In our situation we are dealing with

B(α, β) = (α, β) [(α, ei)(β, em) − (α, em)(β, ei)]×
[(α, ej)(β, en) − (α, en)(β, ej)] (2.2.15)

Clearly, condition (2.2.13) is satisfied. The most direct way to see that condition (2.2.14) also
holds is to introduce the antisymmetric two-formC in the two-dimensional spaceRα ⊕Rβ
by

C(x, y) = (x, ei)(y, em) − (y, ei)(x, em) (2.2.16)

Since there is up to a constant only one antisymmetric bilinear form in a two-dimensional
space, we find that under a reflection inRα ⊕ Rβ the formC(x, y) is only changed by a
constant factor. Since a reflection has order two, the factor is±1. For sake of completeness,
we will verify explicitly that both antisymmetric forms appearing inB(α, β) get the same
factor−1 so that their product is invariant. Therefore condition (2.2.14) is satisfied.

We will use the following lemma:

Lemma 2.3. For any rootγ ∈ {Rα ⊕ Rβ} we have

(σγα, ei)(σγβ, em) = −(α, ei)(β, em) + symmetric (2.2.17)

where symmetric stands for terms which are symmetric ini andm.

Due to the antisymmetry ofB(α, β) in i andm, the symmetric terms drop out and it is clear
that this lemma ensures that condition (2.2.14) is met and therefore the WDVV system (1.2.2)
is satisfied by the functionF . We will now prove the lemma.

Proof. Writing out (σγα, ei)(σγβ, em), we find

(σγα, ei)(σγβ, em) = (α, ei)(β, em)−
2

(γ, γ)

[
(α, γ)(β, em)(γ, ei) + (β, γ)(α, ei)(γ, em)

]
+

4
(γ, γ)2

(α, γ)(β, γ)(γ, ei)(γ, em) (2.2.18)

where the last term is symmetric ini andm. Rewriting the rest usingγ = g1α+g2β, we find

(α, ei)(β, em) − 2
(γ, γ)

[
(α, γ)(β, em)(γ, ei) + (β, γ)(α, ei)(γ, em)

]
= (α, ei)(β, em) − 2

(γ, γ)

[
g2(α, γ)(β, em), (β, ei) + g1(β, γ)(α, em), (α, ei)+

(g1α + g2β, γ)(α, ei)(β, em)
]
= −(α, ei)(β, em) + symmetric (2.2.19)
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Chapter 2 Perturbative prepotentials as explicit solutions

This concludes the discussion of four-dimensional perturbative prepotentials. We will see
in the next section that the five-dimensional situation is more complicated. The matrixK
can no longer be taken to equal the matrix of the Killing form, and as a consequence of this
we can no longer use the Dunkl identity. In fact, the generic five-dimensional perturbative
prepotential does not satisfy the WDVV system. These problems and their resolutions will
be discussed in the next section.

2.3 Five-dimensional perturbative prepotentials

The perturbative prepotentials of the five-dimensional gauge theories calculated with quan-
tum field theory techniques are given by (2.1.4) with base function

f5(x) =
1
6
x3 − 1

4
Li3(e−2x) =

1
6
x3 − 1

4

∞∑
k=1

e−2kx

k3
(2.3.1)

whose third order derivative is

f ′′′
5 (x) = coth(x) (2.3.2)

The corresponding prepotentials donot satisfy the WDVV system. The reason for this is that
the conditions (2.2.13) and (2.2.14) are not satisfied and the Dunkl identity doesn’t hold.

For typeAN Lie algebras it is shown in [24],[47] that the naive prepotential needs to be
corrected by adding cubic polynomial terms coming from string theory. These terms are Weyl
invariant and, as we will see later, they ensure that the typeA prepotential now does satisfy the
WDVV equations. Adding similar terms to the prepotentials for other classical Lie algebras
leads only to partial success: first of all, there are no cubic Weyl invariant polynomials for
Lie algebras ofB,C,D type. Furthermore, adding such cubic terms despite the loss of Weyl
invariance does not lead to solutions. If we include a free parameter in the prepotentials
however, in such a way that theB andD type prepotentials are special cases, then we obtain
solutions to the WDVV system. These solutions are given by fixing the new parameter to
values which have no natural Lie algebraic interpretation. Therefore the connection with Lie
algebras, which was so important in the four-dimensional case, seems to be lost for at least
some of the classical gauge groups. The problems just described and their partial resolutions
will be discussed in section 2.3.1.

The best results for the five-dimensional situation are obtained by adding an extra variable
to the prepotentials. Remarkably, this simple procedure causes them to satisfy the original
WDVV system and restores the important role of the Dunkl identity in the proof. These
results will be discussed in section 2.3.2.

2.3.1 Problems in five dimensions

In this section we will give several theorems concerning five-dimensional prepotentials for
classical Lie algebras, obtained in [28]. We will find that generically these prepotentials do
not satisfy the WDVV system, in contrast to their four-dimensional counterparts.
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We consider functions of the following type

F (a1, ..., aN ) =
∑

1≤i<j≤N

(
α−f5(ai − aj) + α+f5(ai + aj)

)
+η

N∑
i=1

f5(ai)

+
a

6

(
N∑

i=1

ai

)3

+
b

2

(
N∑

i=1

ai

) N∑
j=1

a2
j

 +
c

6

N∑
i=1

a3
i (2.3.3)

where we adopt the notation of [47]. The general form (2.3.3) is motivated by physics, see
for instance [24],[4],[56]. In particular, the second line contains cubic terms coming from
string theory, serving as corrections to the naive field theoretic perturbative prepotentials.
These represent the most general cubic expression which is preserved by permutations of the
variablesa1, ..., aN . The perturbative prepotentials forA,B andD type Lie algebras are
obtained as special cases of this general functionF .

For various combinations of the parameters we will investigate whether or notF satisfies
the WDVV system (1.2.2). The method used involves making an appropriate choice for the
matrixK, although the results are of course independent of this particular choice.

2.3.1.1 The simplest case

The simplest set of parameters we consider isα+ = η = 0. These values do not correspond to
an actual prepotential from physics, but we do find solutions to the WDVV system. Without
loss of generality we can choseα− = 1 by scalinga, b, c.

We can prove the following result

Theorem 2.4. The function (2.3.3) withα− = 1 , α+ = 0 andη = 0 satisfies the WDVV
system (1.2.2) if and only if the following relation holds

Nb3 + 3b2c − ac2 + 3Nb + c + N2a = 0 (2.3.4)

More accurately, this relation is correct in the generic case that bothNb + c 6= 0 andNa +
2b 6= 0. Special cases will be discussed separately in the proof.

Proof. Writing βij = f ′′′(ai − aj), the third order derivatives ofF are

Fklm = a + δklδlm

∑
q 6=k

βkq + 3b + c

 + δkl(1 − δkm)(βmk + b)+

δkm(1 − δkl)(βlk + b) + δlm(1 − δkl)(βkl + b) = aUlm + (Vk)lm (2.3.5)

We take a specific linear combinationK =
∑N

j=1 Fj and using (2.3.2) we find

K = (Na + 2b)U + (Nb + c)I (2.3.6)

Special situations occur whenNa+2b = 0 and / orNb+ c = 0. The first results inK being
a multiple of the identity and the second causesK to become singular. For the moment we
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Chapter 2 Perturbative prepotentials as explicit solutions

will work with genericK and we will come back to the special cases later. The inverse ofK
equals up to a factor

K−1
kl = 1 + δkl

(
− Nb + c

Na + 2b
− N

)
(2.3.7)

For the WDVV equations to hold, we should have(
FiK

−1Fm

)
jn

− (
FmK−1Fi

)
jn

= 0 (2.3.8)

or equivalently

KijKmn − KmjKin − 3Nb + c + N2a

Na + 2b
[Fi, Fm]jn = 0 (2.3.9)

We will first calculate the commutator

[Fi, Fm] = [aU + Vi, aU + Vm] (2.3.10)

We find

(UVm)kl = 2b + δlm(1 − δkl)(Nb + c) (2.3.11)

and sinceUT = U andV T
m = Vm we also knowVmU = (UVm)T . Furthermore, if we use

the identity

βijβik + βijβkj + βikβjk = 1 (2.3.12)

we find

[Vi, Vm]jn = δij(1 − δmn)(1 − δin)(b2 − 1) + δmn(1 − δjm)(1 − δij)(b2 − 1)

− δjm(1 − δmn)(1 − δin)(b2 − 1) − δin(1 − δjm)(1 − δij)(b2 − 1)
+ δijδmn(β + 2(b2 − 1)) − δjmδin(β + 2(b2 − 1)) (2.3.13)

and therefore

[Fi, Fm]jn = δij(1 − δmn)(1 − δin)α + δmn(1 − δjm)(1 − δij)α−
δjm(1 − δmn)(1 − δin)α − δin(1 − δjm)(1 − δij)α+

δijδmn(β − 2α) − δjmδin(β − 2α) (2.3.14)

where

α = b2 − 1 − ac − Nab

β = N + Nb2 + 2bc (2.3.15)

On the other hand, we have

KijKmn − KmjKin = (Na + 2b)2
[
δij(1 − δmn)(1 − δin)γ+

δmn(1 − δjm)(1 − δij)γ − δjm(1 − δmn)(1 − δin)γ

− δin(1 − δjm)(1 − δij)γ + δijδmn(δ − 2γ) − δjmδin(δ − 2γ)

]
(2.3.16)
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where

γ =
Nb + c

Na + 2b
δ = γ2 (2.3.17)

The equation (2.3.9) therefore reduces to two algebraic relations among the parametersa, b, c.
These relations are

−3Nb + c + N2a

Na + 2b
α + (Na + 2b)2γ = 0 (2.3.18)

and

−3Nb + c + N2a

Na + 2b
(2α − β) + (Na + 2b)2(2γ − δ) = 0 (2.3.19)

which combine into only one relation

Nb3 + 3b2c − ac2 + 3Nb + c + N2a = 0 (2.3.20)

This finishes the proof of theorem 2.4 for the generic case where bothNb + c 6= 0 and
Na + 2b 6= 0.

There are special situations for eitherNa + 2b = 0 or Nb + c = 0 or both. IfNa + 2b = 0
andNb + c 6= 0 then we find that the WDVV equations hold if and only if

[Fi, Fm] = 0 (2.3.21)

and therefore if and only if

α = 1 +
(

Na

2

)2

− ac = 0

and

2α − β = −(N − 2)

(
1 +

(
Na

2

)2

− ac

)
= 0 (2.3.22)

Note that just substitutingb = −Na
2 in (2.3.20) gives

(N2a − 2c)

(
1 +

(
Na

2

)2

− ac

)
= 0 (2.3.23)

which is only partially correct sinceN2a − 2c = 0 does not yield a solution.

Furthermore, ifNb + c = 0 andNa + 2b 6= 0, then (2.3.6) shows thatK becomes singular.
Experience tells us that forN 6= 3 there exist no solutions to the WDVV equations without
the extra requirementb = ±1. For N = 3 there is no such condition onb and the WDVV
equations are satisfied. We will now considerb = 1 andb = −1 separately. Ifb = 1 then we
chose a new nonsingularK equal to

K =
N∑

j=1

hjFj =
N∑

j=1

−(2 + a(N − 1))e2aj + a
∑
i6=j

e2ai

 Fj (2.3.24)
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Chapter 2 Perturbative prepotentials as explicit solutions

and working this out we find thatK equals up to a factor(
Na

2
+ b

)
I (2.3.25)

which is a nonzero multiple of the identity sinceNa + 2b 6= 0. If b = −1 on the other hand,
we take

K =
N∑

j=1

hjFj =
N∑

j=1

∏
k 6=j

(2 − a(N − 1))e2ak + a
∑
k 6=j

∏
i6=k

e2ai

 Fj (2.3.26)

which also leads toK being a multiple of the identity. So in both cases we must solve (2.3.21)
again, which leads to

Na + 2b = 0 (2.3.27)

which is precisely what we excluded before.

Finally, if we take bothNa + 2b = 0 andNb + c = 0 then all linear combinations of theFj

become singular and the WDVV equations are meaningless.

Summarizing, we conclude that ifNa + 2b = 0 andNb + c 6= 0 there are solutions if and
only if

1 +
(

Na

2

)2

− ac = 0 (2.3.28)

and if Nb + c = 0 andNa + 2b 6= 0 there are solutions if and only ifN = 3 and finally
if both Na + 2b = 0 andNb + c = 0 then there are no solutions at all. This finishes the
discussion of theorem 2.4.

2.3.1.2 The type A prepotential

Let us now turn to a prepotential with physical background. We consider the function

F̃ (x1, ..., xN+1) =
∑

1≤i<j≤N+1

f5(xi − xj) +
N + 1

2

∑
1≤i<j<k≤N+1

xixjxk (2.3.29)

which is of the form (2.3.3) with parametersa, b, c given by

a =
N + 1

2
b = −N + 1

2
c = N + 1 (2.3.30)

TheSU(N + 1) perturbative prepotential is obtained from̃F by the linear3 change of vari-
ables

ai = xi − xN+1 i = 1, ..., N

aN+1 = x1 + ... + xN+1 (2.3.31)

3 The WDVV equations are invariant under linear coordinate changes
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and the substitutionaN+1 = 0. Concretely it is given by

F (a1, ..., aN ) =
∑

1≤i<j≤N

f5(ai − aj) +
N∑

i=1

f5(ai) +
1

3(N + 1)

(
N∑

i=1

ai

)3

−

1
2

(
N∑

i=1

ai

) N∑
j=1

a2
j

 +
N + 1

6

N∑
i=1

a3
i (2.3.32)

This is of the general type (2.3.3) with parameters

α− = 1 α+ = 0 η = 1

a = 2
N+1 b = −1 c = N + 1

It turns out that the sign of the correction term in (2.3.29) is irrelevant for the WDVV equa-
tions.

We can confirm the result in [47] and prove

Theorem 2.5. The function

F (a1, ..., aN ) =
∑

1≤i<j≤N

f5(ai − aj) +
N∑

i=1

f5(ai) ± 1
3(N + 1)

(
N∑

i=1

ai

)3

∓ 1
2

(
N∑

i=1

ai

) N∑
j=1

a2
j

 ± N + 1
6

N∑
i=1

a3
i (2.3.33)

satisfies the WDVV system (1.2.2).

Remark 2.6. We note that (2.3.33) is invariant under the Weyl group ofAN . In fact, taking
arbitrary values fora, b, c this is still the case. A natural question is therefore whether anF
with α− = 1, α+ = 0 andη = 1 satisfies the WDVV system for any other values ofa, b, c.
Calculations for ranks up to five suggest that there are no other solutions. In particular, the
naive prepotential witha, b, c = 0 coming from quantum field theory does not satisfy the
WDVV system. This should mean that the string theory corrections arepreciselythe ones
needed to satisfy the WDVV equations.

Proof. Taking α− = 1, α+ = 0, η = 1 anda, b, c arbitraryF has third order derivatives
equal to

Fklm = a + δklδlmMk + δklβmk + δkmβlk + δlmβkl (2.3.34)

where

Mk =
∑
q 6=k

βkq + βk

βk = η coth(ak) + (4 − N)b + c

βij =

{
0 if i = j

α− coth(ai − aj) + α+ coth(ai + aj) + b if i 6= j
(2.3.35)
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Consider a linear combinationK of the following form

Kkl = δkl
1

Ak
(2.3.36)

whereAk depends on the specific prepotential under consideration and will be specified later.
We find

(
FiK

−1Fm

)
jl

=
N∑

k=1

FijkAkFklm

= δim

(
Aiβjiβlm + δijβlmAiMi + δilβjiAiMi + δijδlmAiMiMm

)
+ δjl(1 − δlm)Ajβijβmj

+ δjlδlmAmMlβim

+ δijδilAiMlβmi

+ δil(1 − δjm)Aiβjiβmi

+ δlm(1 − δij)

(
Aiβjiβim + Ajβijβjm + aAmMm + a

∑
k

Akβkm

)
+ δjm(1 − δil)Ajβijβlj

+ δij(1 − δlm)

(
Alβliβml + AmβmiβlmaAiMi + a

∑
k

Akβki

)

+ δijδlm

(
AiMiβim + AmMmβmi +

∑
k 6=i,m

Akβkmβki + aAmMm

+a
∑

k

Akβkm + aAiMi + a
∑

k

Akβki

)
+ δjmδil

(
Amβ2

im + Aiβ
2
mi

)
+ a2

∑
k

Ak + a(Ajβij + Aiβji) + a(Amβlm + Alβml) (2.3.37)

Here it should be noted that the last line contributes to all the previous ones. For example, if
i = l, i 6= m, i 6= j, j 6= m then

(
FiK

−1Fm

)
jl

is not

Ajβijβmj (2.3.38)

but rather

Ajβijβmj + a2
∑

k

Ak + a(Ajβij + Aiβji) + a(Amβim + Aiβmi) (2.3.39)

In order to satisfy the WDVV system we should check whether or not (2.3.37) is symmetric
in i andm. For example, the first two lines are automatically preserved under the interchange
of i andm. The third and fourth lines on the other hand are mutually exchanged. The rest of
condition (1.2.2) is nontrivial and depends on the details of the functionF .
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The two casesa = ± 2
N+1 , b = ∓1 , c = ±(N + 1) have to be treated separately.

The case a = − 2
N+1 , b = 1 , c = −(N + 1) :

For this case, we take a specific linear combinationK =
∑

j hjFj where

hj = e2aj +
N∑

i=1

e2ai (2.3.40)

and we find up to a factor

Kkl = δkl

(
1

1 − e−2ak

)
= δkl

1
Ak

(2.3.41)

Using this information we can derive the following identities

Ajβij + Aiβji = 2 − 2
e2ai

− 2
e2aj

(2.3.42)

Aiβij + Ajβji = 2 (2.3.43)

Aiβjiβim + Ajβijβjm − Amβjmβim =
4

e2am
(2.3.44)

Turning to the WDVV condition we find that the first two lines of (2.3.37) are preserved under
the interchange ofi andm and that the third and fourth lines become mutually exchanged.
We will now study the fifth and sixth lines. Keeping in mind that the last line of (2.3.37)
contributes to both of these, we find that the fifth line becomes

δil(1 − δlm)
(

Ajβijβmj + a2
∑

k

Ak + a (Ajβij + Aiβji) + a (Amβlm + Alβml)
)

and the sixth becomes

δlm(1 − δij)
(

Aiβjiβim + Ajβijβjm + a2
∑

k

Ak+

a (Ajβij + Aiβji) + a
∑

k

Akβkm + aAmMm

)
Using the definition ofMm and the relations (2.3.42), (2.3.43) and (2.3.44) we see that these
are indeed exchanged under the interchange ofi andm. The seventh and eighth lines of
(2.3.37) are mutually exchanged for the same reasons, which leaves us with the ninth and
tenth lines. The complete ninth line becomes

δijδlm

(
AiMiβim + AmMmβmi +

∑
k 6=i,m

Akβkmβki + aAmMm+

a
∑

k

Akβkm + aAiMi + a
∑

k

Akβki + a2
∑

k

Ak

)
(2.3.45)

and the tenth line is

δjmδil

(
Amβ2

im + Aiβ
2
mi + 2a (Amβim + Aiβmi) + a2

∑
k

Ak

)
(2.3.46)
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Chapter 2 Perturbative prepotentials as explicit solutions

Using the definition ofMm and working out (2.3.45) we find

δijδlm

( ∑
k 6=i,m

(Akβikβim + Amβmkβmi + Akβkmβki) + Aiβ
2
im+

Amβ2
mi + Aiβiβim + Amβmβmi + a

∑
k 6=m

(Amβmk + Akβkm) +

aAmβm + a
∑
k 6=i

(AiβikAkβki) + aAiβi + a2
∑

k

Ak

)
(2.3.47)

We will make use of (2.3.43) and the following relations

Aiβikβim + Amβmkβmi + Akβkmβki = 4 (2.3.48)

Aiβiβim + Amβmβmi = 8 − 4N (2.3.49)

and we find that the ninth line becomes

δijδlm

(
Aiβ

2
im + Amβ2

mi + 4a(N − 1) + a (Amβm + Aiβi) + a2
∑

k

Ak

)
(2.3.50)

Using (2.3.43) again we find that the tenth line becomes

δjmδil

(
Amβ2

im + Aiβ
2
mi + 4a − 4a

e2ai
− 4a

e2am
+ a2

∑
k

Ak

)
(2.3.51)

and using the relations

Aiβ
2
im + Amβ2

mi − Amβ2
im − Aiβ

2
mi =

4
e2ai

+
4

e2am
(2.3.52)

8 − 4N +
2N − 2

e2ai
+

2N − 2
e2am

= Amβm + Aiβi (2.3.53)

we find that the ninth and tenth lines are indeed exchanged under the interchange ofi andm.
Therefore the prepotential (2.3.33) satisfies the WDVV equations and we have proven half of
theorem 2.5.

The case a = 2
N+1 , b = −1 , c = (N + 1) :

In this case, taking

hj = e2aj +
N∑

i=1

e2ai (2.3.54)

we find that up to a factorK =
∑

j hjFj equals

δkl

(
1

1 − e2ak

)
= δkl

1
Ak

(2.3.55)
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So with respect to the previous case there are modifications in the definitions ofβk, βij and
Ak. This causes the relations (2.3.42), (2.3.43), (2.3.44), (2.3.48), (2.3.49), (2.3.52) and
(2.3.53) to be changed to the following ones

Ajβij + Aiβji = −2 + 2e2ai + 2e2aj

Aiβij + Ajβji = −2
Aiβjiβim + Ajβijβjm − Amβjmβim = 4e2am

Aiβikβim + Amβmkβmi + Akβkmβki = 4
Aiβiβim + Amβmβmi = 4N − 8

Aiβ
2
im + Amβ2

mi − Amβ2
im − Aiβ

2
mi = 4e2ai + 4e2am

Amβm + Aiβi = 4N − 8 −
(2N − 2)e2ai − (2N − 2)e2am

and using these relations we find that the WDVV equations are again satisfied. This proves
theorem 2.5.

2.3.1.3 Other classical Lie algebras

Next we consider a prepotential inspired by other classical Lie algebras. Without correction
terms, theB,D prepotentials are both given byα− = 1, α+ = 1 and byη = 1, 0 respectively.
Leaving the parameterη unfixed, we can prove the following theorem

Theorem 2.7. The function

F (a1, ..., aN ) =
∑

1≤i<j≤N

(
f5(ai − aj) + f5(ai + aj)

)
+η

N∑
i=1

f5(ai) (2.3.56)

satisfies the WDVV equations (1.2.2) if and only ifη = −2(N − 2).

Remark 2.8. This solution seems to have little to do with theB,D Lie algebras, sinceη
must take on a fixed special value different from0 and1. One can think about restoring the
Lie algebraic interpretation by adding third order correction terms. It is conceivable that
their contribution gives enough freedom to takeη equal to0 or 1. But the Lie algebras under
consideration do not possess any third order Weyl invariant polynomials and therefore the
correction terms would automatically spoil Weyl invariance and any Lie algebraic interpre-
tation with it. Fourth (or higher) order correction terms should therefore be used which give
nonconstant additions to the third order derivatives ofF , which is beyond the scope of this
thesis.

As an alternative, we can introduce an extra auxiliary variable which can be multiplied by
the secondorder Weyl invariant polynomial that all simple Lie algebras have. The success
of this approach is remarkable and will be discussed in detail in section 2.3.2. For the sake
of completion we mention that calculations for low ranks indicate that adding third order
correction terms with parametersa, b, c indeed doesn’t help: the WDVV equations always
forcea = b = c = 0.
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Proof. The first part of the proof is identical to the first part of the proof of theorem 2.5. The
third order derivatives are given by (2.3.34) with

Mk =
∑
q 6=k

βkq + βk

βk = η coth(ak)

βij =

{
0 if i = j

coth(ai − aj) + coth(ai + aj) if i 6= j

a = b = c = 0 (2.3.57)

One can derive the following relations

βjiβim + βijβjm − βjmβim = 0 (2.3.58)

βikβim + βmkβmi + βkmβki = 4 (2.3.59)

βiβim + βmβmi = 2 (2.3.60)

which are identities that we will need later. Furthermore, we take

Kkl =
N∑

j=1

sinh(2aj)Fjkl (2.3.61)

and using (2.3.58) we find

Kkl = δkl

1 − N +
N∑

j=1

cosh2(aj) +
1
2

(2(N − 2) + η) cosh2(ak)

 (2.3.62)

This becomes independent ofk andl precisely forη = −2(N − 2). So for this value ofη we
can regardK as a multiple of the identity. First let us consider all other values ofη, so that
K is equal to (2.3.36) with

Ak =
1

1 − N +
∑

j cosh2(aj) + 1
2 (2(N − 2) + η) cosh2(ak)

=
1

X + Yk
(2.3.63)

In order to satisfy the WDVV equations, the expression (2.3.37) should be symmetric ini and
m. Just as in the previous section, the first nontrivial condition is that the fifth and sixth lines
of (2.3.37) are exchanged under the interchange ofi andm. This condition translates into

Aiβjiβim + Ajβijβjm − Amβjmβim = 0 (2.3.64)

and therefore

(X + Yj)(X + Ym)βjiβim + (X + Yi)(X + Ym)βijβjm−
(X + Yi)(X + Yj)βjmβim = 0 (2.3.65)

Working this out further we find

− 1
16

(e4ai − 1)(e4aj − 1)(2(N − 2) + η)2

e2(ai+aj)
= 0 (2.3.66)
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Therefore we find that forη 6= −2(N − 2) the WDVV equations are not satisfied. We will
now determine what happens for the valueη = −2(N − 2), for whichK becomes a multiple
of the identity. Then (2.3.37) becomes

N∑
k=1

FijkFklm = δim

(
βjiβlm + δijβlmMi + δilβjiMi + δijδlmMiMm

)
+ δjl(1 − δlm)βijβmj

+ δjlδlmMlβim

+ δijδilMlβmi

+ δil(1 − δjm)βjiβmi

+ δlm(1 − δij) (βjiβim + βijβjm)
+ δjm(1 − δil)βijβlj

+ δij(1 − δlm) (βliβml + βmiβlm)

+ δijδlm

(
Miβim + Mmβmi +

∑
k 6=i,m

βkmβki

)
+ δjmδil

(
β2

im + β2
mi

)
(2.3.67)

The seventh and eighth lines are exchanged under the interchange ofi andm for the same
reasons as the fifth and sixth lines.Therefore it remains to check that the ninth and tenth lines
are exchanged. To do this, we use (2.3.59) and (2.3.60) and find

Miβim + Mmβmi +
∑

k 6=i,m

βkmβki =

∑
k 6=i,m

(βikβim + βmkβmi + βkmβki) + β2
im + β2

mi + η(βiβim + βmβmi) =

∑
k 6=i,m

4 + β2
im + β2

mi + 2η = β2
im + β2

mi + 2 (2(N − 2) + η) (2.3.68)

So for the special valueη = −2(N − 2) we can conclude thatF satisfies the generalized
WDVV system. This finishes the proof of theorem 2.7.

2.3.1.4 An additional result

Here we mention a result which should be compared with theorem 2.4. It was obtained in the
process of proving the main results of this section

Theorem 2.9. The function (2.3.3) withα− = 0, α+ = 1, η = 0 and base functionf4

instead off5 satisfies the WDVV equations (1.2.2) if and only if

Nb3 + 3b2c − ac2 = 0 (2.3.69)

Therefore adding Weyl invariant cubic terms

a

6

(
N∑

i=1

ai

)3

+
b

2

(
N∑

i=1

ai

) N∑
j=1

a2
j

 +
c

6

N∑
i=1

a3
i (2.3.70)
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to the four-dimensional type A prepotential leads only to a solution of the generalized WDVV
system if the condition (2.3.69) holds.

Proof. We will prove theorem 2.9 by adapting the proof of theorem 2.4. We find that[Fi, Fm]
is of the same form as (2.3.14) but with

α = −b2 − ac − Nab

β = Nb2 + 2bc (2.3.71)

and we find precisely the sameKijKmn − KmjKin as in (2.3.16). ForN 6= 2 this again
leads to a single relation, namely

Nb3 + 3b2c − ac2 = 0 (2.3.72)

which is to be compared with (2.3.20). This finishes the proof of theorem 2.9.

2.3.2 Adding an extra variable

We take the perturbative prepotential (2.1.4) with base function (2.1.6) and add an additional
variablea0. We have the following result

Theorem 2.10. [50] For any root systemR on a spaceV with the standard Euclidean basis
{e1, ..., eN}, the following functionF

F (a0, ..., aN ) =
1
2

∑
α∈R

f5((α, a)) + γ

[
1
6
a3
0 +

1
2
a0(a, a)

]
(2.3.73)

satisfies the WDVV system (1.2.2) for a particular value ofγ which depends on the root
system.

Since theγ turn out to be imaginary, the prepotentials no longer satisfy the property that
substituting real variablesak leads to a real value ofF . To restore this property one can
change the variablesak to iak and the functionf5 to

f5(x) =
1
6
(ix)3 − 1

4
Li3(e−2ix) (2.3.74)

Thisf5 is also used in the literature, see e.g. [53].

Remark 2.11. We can think of(a0, a) as an element of an extension of the root spaceR̃ =
Re0 ⊕ R where we have introduced an additional basis vectore0. With respect to the basis
{e0, ..., eN} we can define a flat metric oñR by means of the inner product(ei, ej) = δij ,
thus trivially extending the Euclidean metric onR. The matrix of third order derivativesF0

naturally receives the interpretation as this metric. In fact, the variablea0 plays the role of a
special variable and the functionF (a0, ..., aN ) satisfies theoriginal WDVV system (1.1.2).

Proof. We will use the matrixK = F0 which obviously equals a multiple of the identity.
Therefore the WDVV condition (1.2.2) reduces to

FiFm − FmFi = 0 (2.3.75)

50



which are automatically satisfied wheneveri = 0 orm = 0. Restricting ourselves toi,m 6= 0
the condition becomes

N∑
k=1

(FijkFkmn − FmjkFkin) + γ2 (δijδmn − δinδjm) = 0 (2.3.76)

where all indices run from1 to N . We remind the reader that the first of these two terms
(but with base functionf4) also appears in the proof of the WDVV equations in the four-
dimensional context, see (2.2.9). There we proved that this first term equals zero by using
the Dunkl identity (2.2.12) corresponding tof4. In the present five-dimensional situation we
will use a similar Dunkl identity[51] associated withf5:∑

σασβ = w

α, β ∈ R+

B(α, β)f ′′′
5 (α, a)f ′′′

5 (β, a) =
∑

σασβ = w

α, β ∈ R+

B(α, β) (2.3.77)

which is valid under the same conditions (2.2.13) and (2.2.14) as before. Since we use the
sameB(α, β) these conditions are again satisfied.

The underlying idea behind this second Dunkl identity is thatg(x) = f ′′′
4 (x) satisfies the

basic functional relation[
g(x) + g(y)

]
g(x + y) +

[
g(x) − g(y)

]
g(x − y) = 0 (2.3.78)

whereasg(x) = f ′′′
5 (x) satisfies a similar relation[
g(x) + g(y)

]
g(x + y) +

[
g(x) − g(y)

]
g(x − y) = 2 (2.3.79)

Just like we did in the four-dimensional situation we use the antisymmetry inj andn and
restrict to positive roots. Taking the sum again over all roots the condition (2.3.76) becomes

1
4

∑
w∈W

∑
σασβ = w

α, β ∈ R

(α, β) [αiβm− αmβi] [αjβn− αnβj ] = −2γ2 (δijδmn− δinδjm) (2.3.80)

We want to evaluate the left hand side. First we introduce the homogeneous 4-formA by

1
4
A(x, y;u, v) =∑

α,β∈R

(α, β) [(α, x)(β, y) − (α, y)(β, x)] [(α, u)(β, v) − (α, v)(β, u)] (2.3.81)

which is antisymmetric inx, y and inu, v. Moreover it is invariant under the Weyl group
W and under permutation ofx, y by u, v. Consequently a small calculation shows that we
necessarily have

A(x, y;u, v) = c((x, u)(y, v) − (x, v)(y, u)) (2.3.82)
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AN BN CN DN E6 E7 E8 F4

γ
√

N + 2i
√

2(2N − 3)i
√

4(N + 2)i
√

4(N − 2)i
√

3i
√

48i
√

160i
√

15i

c 2(N + 2) 4(2N − 3) 8(N + 2) 8(N − 2) 6 96 320 30

Table 2.1: The numbersγ andc featuring in theorem 2.10 and its proof.

for some fixed constantc. With respect to the Euclidean coordinatese1, . . . , en this means
that the expression (2.3.80) equals

c (δijδmn − δinδjm)

Hence the WDVV condition reduces toc = −2γ2. The precise values ofc are evaluated with
the help of appendix of Bourbaki [8] and they are listed in table 2.1.

2.4 Energy scale and compactification radius as new variables

In this section we will see that there are natural parameters which can serve as extra variables
for the four-dimensional as well as the five-dimensional prepotentials: in four dimensions it
is the energy scale, in five dimensions a compactification radius. At first sight, there appear
to be great advantages to this point of view: in four dimensions it has been suggested [6] that
the energy scale provides an extra variablea0 in such a way thatF (a0, ..., aN ) satisfies the
original WDVV system. This makes it very attractive to introduce an extra variable there. In
five dimensions on the other hand we have seen in the previous section that weneedan extra
variable. To have a natural parameter play the role of this new variable, which we introduced
by hand, is a very tempting idea. However, we will see that both in four as well as in five
dimensions these ideas do not work.

We have already mentioned that in the four-dimensional situation, the perturbative prepoten-
tial (2.1.4) is the zero order term in theµ expansion of the full prepotential. More correctly,
the prepotential doesn’t have a power series expansion inµ, since it contains alog(µ) term.
This term however does not contribute to the WDVV equations since it is multiplied by a
second order polynomial in thea variables. To be specific, the perturbative prepotential for a
root systemR including thislog(µ) term is given by

F (a1, ..., aN ) =
1
2

∑
α∈R

(α, a)2 log
(

(α, a)
µ

)
(2.4.1)

Giving degree1 to botha andµ we find thatF is homogeneous of degree2. This can be
expressed by means of Euler operators in the following way[

µ
∂

∂µ
+

∑
i

ai
∂

∂ai

]
F = 2F (2.4.2)

The second order derivatives ofF have degree zero, so we find that

βjk := µ
∂

∂µ
Fjk = −

∑
i

aiFijk = −Kjk (2.4.3)
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whereKjk is the linear combination of third order derivatives ofF that we used to prove
the WDVV equations. Theβjk are physically very important objects called beta functions.
For perturbative prepotentials they are the semiclassical coupling constants, whereas for the
full prepotentials discussed in chapter 3 they determine the energy scale dependance of the
coupling constants. Not only do we see that theβjk naturally emerge in the proof of the
WDVV equations, but moreover we find that by introducting a new variablea0 = − log(µ)
we can writeKjk as

Kjk = F0jk (2.4.4)

which is similar to the five-dimensional situation. The question now arises whether or not
the WDVV equations still hold if we regarda0 as an extra variable on equal footing with the
otherai.

Proposition 2.12. The function

F (a0, ..., aN ) =
1
2

∑
α∈R

(α, a)2 log((α, a)) + a0

∑
α∈R

(α, a)2 (2.4.5)

does not satisfy the WDVV equations (1.2.2) for any root systemR.

Proof. Due to the dependence ofF on a0 none of the matricesFk nor any of their linear
combinations is invertible.

Trying to repair this, one can trya0 = µ as a new variable instead. The result however is
equally disappointing.

Proposition 2.13. The function

F (a0, ..., aN ) =
1
2

∑
α∈R

(α, a)2 log((α, a)) − log(a0)
∑
α∈R

(α, a)2 (2.4.6)

does not satisfy the WDVV equations (1.2.2) for any root systemR.

Proof. Due to equation (2.4.2) we find that

(Fj)0k = − 1
a0

N∑
i=1

ai (Fj)ik (2.4.7)

so the zeroeth row ofFj can be expressed as a linear combination of the other rows.and
therefore none of theFj nor their linear combinations are invertible.

We have found that addingµ as a new variable to the perturbative prepotential does not lead
to new solutions to the WDVV equations. Since the full prepotential is also homogeneous
of degree2, the addition ofµ doesn’t give any solutions to the WDVV system there as well.
This seems to contradict the findings in [6].

Let us now turn to the five-dimensional perturbative prepotentials. They are obtained by
compactifying the fifth dimension of the theory and the dependence on the compactification
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Chapter 2 Perturbative prepotentials as explicit solutions

radiusR (not to be confused with the root system, also denoted byR) was suppressed so far.
Including it4, the prepotentials become [56]

F (a1, ..., aN ) =
∑
α∈R

f5((α, a)) (2.4.8)

with

f5 =
R

6
x3 − 1

4R2
Li3(e−2Rx) (2.4.9)

which reduces to (2.3.1) forR = 1. Regarding the compactification radiusR as a new vari-
ablea0 does not lead to the sameF as in equation (2.3.73) in section 2.3.2. So even though
it is tempting to believe that the extra variable that so naturally solves the problems in five-
dimensional gauge theories is the compactification radius, this is in fact not true. Moreover,
explicit computations on the typeB prepotential have shown that (2.4.8) is not a solution to
the WDVV equations.

4 Restoring the role of the compactification radius alters the analysis of section 2.3.2 only slightly:
γ should be replaced by Rγ.
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Chapter 3

In this chapter we introduce the nonperturbative four-dimensional Seiberg-
Witten prepotentials. Since their definition for a general simple Lie algebra is
rather complex, we have chosen to first work out in section 3.1.1 the simplest
example of Lie algebraAN , which has the advantage of giving all the essential
ingredients without going into numerous technicalities. The rest of section 3.1
deals with the main ingredients for the prepotentials for the other simple Lie
algebras, which are subsequently defined in section 3.2.
Section 3.3 contains the proof of the important result that the nonperturbative
prepotentials satisfy the generalized WDVV equations. The family of associa-
tive, commutative algebras (1.2.5) is identified and the relation (1.2.3) between
its structure constants and the prepotential is shown to exist using two different
methods.
Finally, in section 3.4 we show that in a certain limit the four-dimensional
nonperturbative prepotential for typeAN Lie algebra goes to its perturbative
counterpart. This establishes the link between the present and the previous
chapter, as promised in section 2.1.

3.1 The Seiberg-Witten data

The full nonperturbative prepotentials originally arose as the solution toN = 2 supersym-
metric Yang-Mills theory, also called Seiberg-Witten theory [59]. Although this physical
context is essential for a full understanding of the prepotentials, it would take too much time
to expose it here in full detail. For reviews on the subject, see for example [3, 7, 15].

On the other hand, the prepotentials can be described in the framework of an integrable sys-
tem called the periodic Toda chain [22], [48]. We will assume that the reader has some
knowledge of integrable dynamical systems, and we use the Toda chain context as the back-
ground and motivation for answering certain questions which are relevant in the construction
of the prepotentials.

Apart from context, the prepotentials can be defined in purely mathematical terms with the
help of the theories of Lie algebras and Riemann surfaces. Again we assume that the reader
has a basic knowledge of both these theories. Restricting ourselves to this purely mathemati-
cal definition of the prepotential for a simple Lie algebrag, the three main ingredients in the
construction are the following:

• The first ingredient is a family of Riemann surfaces corresponding to a set of affine
curves

Σg =
{
(x, z) ∈ C2| P (x, z, u1, ..., uN ) = 0

}
(3.1.1)

where theui serve as complex moduli parameters,N is the rank ofg and a Riemann
surface inΣg has genusg ≥ N .
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Chapter 3 The full Seiberg-Witten prepotentials

• The second ingredient is a special meromorphic differentialλSW onΣg which is called
the Seiberg-Witten differential. Its special property is that the derivatives ofλSW with
respect to the moduli are holomorphic differentials onΣg.

• The third ingredient is a choice of2N independent cycles onΣg out of a total2g. If
we choose a canonical basis{Ai, Bj} of the first homology group, the choice consists
of N cycles of typeA andN cycles of typeB in such a way that the restriction of the
intersection form to this subset is nondegenerate:Ai ◦ Bj = δij .

Once these ingredients are introduced, we define the prepotential in terms of period integrals
of λSW over the chosen2N cycles. Since varying the moduli will influence the period
integrals, the (locally defined) prepotential is a function on moduli space.

3.1.1 A simple example: type A Lie algebra

Since the Seiberg-Witten data and the construction of the prepotential is complicated and
technical for general simple Lie algebras, we give the example of Lie algebrag = AN here
separately. As mentioned above, there are three main ingredients in the Seiberg-Witten data:
a family of spectral curves, a special meromorphic differential on it and a set of2N cycles.

3.1.1.1 The family of curves

A Riemann surface can be looked upon in various ways. Due to the Lie algebraic nature of
our setup, we will often consider it as an algebraic curve inP2. On the other hand, we need
the realization of the Riemann surface in terms of a complex manifold in order to study the
holomorphic differentials on it. We will use the usual relation between these two realizations,
see for example [10], [35].

Often we will give a Riemann surface in terms of an affine curveC in C2 defined through a
polynomialP as

C =
{
(x, y) ∈ C2| P (x, y) = 0

}
(3.1.2)

The corresponding algebraic curve inP2 is given by adding the appropriate points at infinity.
In terms of affine curves, a family of Riemann surfacesΣ is by definition

Σ =
{
(x, y) ∈ C2| P (x, y, u1, ..., uN ) = 0

}
(3.1.3)

where for generic values of the complex parametersu1, ..., uN the genus of the curveΣ is
fixed to some numberg. For special values however, the genus may decrease. Denoting by
M the manifoldCN − ∆ with the special values of theui removed, we can look upon the
family as a fibration of Riemann surfaces overM. The spaceM is called the moduli space
of the family and theui are called the moduli.

Returning to the specific example under consideration, the family of Riemann surfacesΣAN

is given by

ΣAN
=

{
(x, y) ∈ C2| P (x, y, ui) = y2 − W (x, ui)2 + 4 = 0

}
(3.1.4)

W (x, ui) = xN+1 + u1x
N−1 + ... + uN−1x + uN (3.1.5)
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Remark 3.1. The fact thatW can be identified with the Landau-Ginzburg superpotential of
typeAN , or equivalently with a deformation of the typeAN singularity, is not restricted to
the typeA case. We will see in section 3.3.2 that the polynomialP defining the families of
curves for the otherADE Lie algebras can also be used to construct a one-variable version
of a Landau-Ginzburg superpotential. For the nonADE Lie algebras the curves are more
complicated and there is no direct relation with the corresponding singularities.

The curves in the family (3.1.4) are hyperelliptic, which makes their investigation relatively
simple. Moreover, as a matter of fortunate coincidence in the typeAN case the rankN of the
Lie algebra equals the genusg of the curves and these are the main reasons why it serves as
the simplest example.

3.1.1.2 The moduli space and its K ähler metric

To get an idea of the structure of the moduli spaceM, we mention that for all Lie algebras
M is known to be a K̈ahler1 manifold with Kähler metric defined in terms of the prepotential.
If we denote the prepotential, which we will introduce later, byF(a1, ..., aN ) then the metric
is given in terms of the coordinatesai by

(ds)2 =
∑
i,j

Im

(
∂2F

∂ai∂aj

)
daidāj (3.1.6)

This relation is in fact the reason for the name prepotential, serving as the basic building
block for the K̈ahler potential. In the context of perturbative prepotentials, we saw in section
2.2 that the linear combinationK of third order derivatives ofF appearing in the WDVV
equations could be identified with a natural metric: the Killing form on the root space of the
Lie algebra. We want to know if the K̈ahler metric can play a similar role, i.e. if there exist
parametersαk such that ∑

k

αkFijk = Im (Fij) (3.1.7)

Even though the parametersαk are allowed to depend onai, āi, it still seems unlikely that
they can link the holomorphic third order derivatives ofF to the imaginary part of the second
order derivatives. It is therefore very unlikely that the Kähler metric can fulfill a similar role
as the Euclidean metric in the perturbative case.

3.1.1.3 The Seiberg-Witten differential and its derivatives

Moving on to the second ingredient in the construction ofF , the Seiberg-Witten differential
λSW is given by

λSW = log(y + W )dx − log(2)dx (3.1.8)

1 In fact, manifolds with Kähler metric of the form (3.1.6) are known as rigid special Kähler manifolds
[13].
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The special property ofλSW is that its derivatives with respect to the moduli are all holomor-
phic. We will first explain what it means to differentiate (see [44]).

We can regard the equationP (x, y, u) = 0 as defining implicitly the functiony(x, uk). The
derivative ofy with respect to the moduli gives

∂y

∂uk
= −Puk

Py
(3.1.9)

wherePuk
= ∂P

∂uk
. Usingx as a local coordinate on the Riemann surface, we can extend this

differentiation to differential formsω = φdx by

∂

∂ui
(φdx) =

(
∂φ

∂ui
+

∂φ

∂y

∂y

∂ui

)
dx (3.1.10)

Alternatively, we can usey as a local coordinate and regardP = 0 as implicitly defining
x(y, ui). We can calculate the derivative ofω = −φ

Py

Px
dy again and see if we get the same

answer as in (3.1.10). In general this is the case only up to total differential forms [44] so
that taking a derivative of differential forms with respect to the moduli is unique only in
cohomology.

Now we come back to the derivatives ofλSW , which we will show to be cohomologous to
a set of linearly independent holomorphic differentials. Usingx as a local coordinate, the
derivatives ofλSW are

∂λSW

∂uk
=

1
y + W

∂

∂uk
(y + W ) dx =

1
y + W

(
W

y
+ 1

)
∂W

∂uk
dx = xN−k dx

y
(3.1.11)

and it is well-known that these give a basis of the holomorphic differentials of the hyperellip-
tic Riemann surfaces in the familyΣAN

.

3.1.1.4 The special cycles

For a generic simple Lie algebra the rank is smaller than the genus of the family of curves
and a selection of2N of the 2g cycles has to be made. For typeAN no such selection is
necessary, and therefore we can immediately proceed to define the prepotential.

3.1.1.5 The prepotential for type A Lie algebra

We define the period integrals ofλSW over a set of canonicalA cycles of the curve

ai =
∮

Ai

λSW (3.1.12)

Theai are moduli dependent and we can use their definition as a local change of variables on
the moduli space. The Jacobian of this transformation is nonzero since

∂ai

∂uj
=

∮
Ai

∂λSW

∂uj
(3.1.13)
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and a matrix built from the integrals of all holomorphic differentials over allA cycles is
always nondegenerate. Here we have pulled differentiation with respect to moduli through
the integration sign. The justification for this is that the integral does not depend on the
particular cycleAi but only on its homology class. This allows to choose a representative of
this class which encircles the branch cuts widely, so that changing the position of a branch
point slightly doesn’t change the cycle. This in turn allows to differentiate with respect to the
moduli under the integration sign.

We can now define the derivatives ofλSW with respect to the variablesai by using the chain
rule and we find that the∂λSW

∂ai
form a canonical set of holomorphic differential forms since∮
Aj

∂λSW

∂ai
=

∂aj

∂ai
= δij (3.1.14)

We introduce the integrals ofλSW over theB cycles

bj =
∮

Bj

λSW (3.1.15)

Differentiating thebj with respect to the moduli we find

∂bj

∂ai
=

∮
Bj

∂λSW

∂ai
= Πij (3.1.16)

whereΠij is the period matrix of the Riemann surface, which according to Riemann’s bilinear
relations is symmetric. Therefore we can (locally) integrate thebj and obtain

bj =
∂F
∂aj

(3.1.17)

and the locally defined functionF(a1, ..., aN ) is called the prepotential.

Definition 3.2. Associated to the typeAN Lie algebra, we define the family of curvesΣAN

by (3.1.4) and a meromorphic differentialλSW by (3.1.8). The prepotentialF(a1, ..., aN ) is
defined locally on the moduli spaceM by

ai =
∮

Ai

λSW

bj =
∮

Bj

λSW =
∂F
∂aj

(3.1.18)

Different choices ofA and B cycles give different prepotentials, which we will put in one
equivalence class for reasons described in the next subsection.

3.1.1.6 The effect of a particular choice of cycles

The fact thatF cannot be extended to a global function on the moduli space was known
already to Seiberg and Witten [59] for the simplest case ofA1. Instead ofF being a function
on M, we have that(ai, bj) is a section of a flat bundle overM with structure groupΓ ⊂
C ⊗ Sp(2N,Z) × U(1).
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Chapter 3 The full Seiberg-Witten prepotentials

Let us elaborate on this flat bundle. Since the moduli spaceM is constructed as a subman-
ifold of CN , it will in general have a nontrivial fundamental group. One can circle along
the nontrivial homotopy elements and pick up a monodromy on the cycles of the Riemann
surface. Typically, the homology element encircles a gap of complex codimension one in
CN in which one or more cycles of the Riemann surface get pinched. The monodromy is
given by the Picard-Lefschetz theorem, which prescribes that the effect of a pinched cycleδ
on another cycleζ is

ζ → ζ + (ζ ◦ δ)δ

where◦ denotes the intersection of the two. A small calculation shows that under these trans-
formations a canonical homology basis remains canonical, in other words the monodromy
operator is symplectic.

Together with the transformation onλSW , which may undergo a change in phase, this in turn
induces a monodromy on the flat bundle sending(a, b) to some(ã, b̃). The structure group of
the bundle is therefore up to a phase generated by the monodromies, one for every nontrivial
first homology element ofM. Since the monodromies are symplectic, the structure group is
a subgroup ofC ⊗ Sp(2N,Z) × U(1).

The matrix of transformed variables

∂b̃j

∂ãi

is again symmetric and can be integrated locally to a new functionF̃(ã1, ..., ãN ). This leads
to different functionsF locally for each patch ofM. In the physics literature, a lot of ef-
fort is spent on determining the precise cycles for each patch. Our point of view however
concerns only the WDVV equations. Since we know from section 1.2.4 that both the sym-
plectic group and the change of phase are symmetries of the WDVV equations, we are not
so much interested in the particular local functionsF since they will all be solutions to the
WDVV equations. Therefore we will put all choices (and all resulting prepotentials) in one
equivalence class.

3.1.2 Preliminaries: the periodic Toda chain and spectral curves

Consider a finite-dimensional dynamical system with enough preserved quantities in invo-
lution, so that there exists a canonical transformation to action-angle variables in which the
time development of the system is given by a straight line motion on a torus. The existence
of this so-called Liouville torus is guaranteed [42] if a Lax pair exists, i.e. a pair of square
matricesL,M which depend on the positions and momenta in such a way that the equations
of motion are equivalent to

dL

dt
= [L,M ] (3.1.19)

In this case the preserved quantities are given by Tr(Lk), which are time independent due
to the cyclicity properties of the trace. Here it is important thatL andM are at least of
dimensionN ×N if the phase space has dimension2N , so that there are enough functionally
independent traces.
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Sometimes, one can construct a Lax pair depending on an auxiliary parameterz: for any
value of this so-called spectral parameter the pairL(z),M(z) is a Lax pair for the system.
The spectral equation forL(z)

P (x, z) = det
[
L(z) − x · I

]
= 0 (3.1.20)

is then invariant under the flow. Equation (3.1.20) can be interpreted as the definition of a
family of Riemann surfacesΣ, with the phase space variables playing the role of the moduli.

Since the Jacobian of the Riemann surface is a higher dimensional torus, it is tempting to
suggest that the Liouville torus is the Jacobian ofΣ. Indeed, for the periodic Toda chain
which we will consider shortly this is sometimes the case. In the simplest case of a periodic
Toda chain associated with the affine Lie algebra of typeAN , the Liouville torus is given
precisely by the Jacobian ofΣ for a particular Lax pair with spectral parameter [2, 1]. For
other Lie algebras and other Lax pairs however, the genus of the spectral curves becomes too
big and the Jacobian is larger than the Liouville torus. Still, one expects the Liouville torus
to sit inside the Jacobian ofΣ. The problem of finding the Liouville torus as a subvariety of
the Jacobian of a spectral curve is called the Adler-van Moerbeke problem in the literature
[2, 1], and its solution will be important in the definition of the prepotential and the proof
of the WDVV equations. Essentially, the family of Riemann surfaces needed to define the
prepotential will be given by (3.1.20) for the periodic Toda chain with a particular Lax pair,
and the special subset of cycles together withλSW generate the Liouville torus inside the
Jacobian.

Let us now turn to the periodic Toda chain, which was shown to be related to Seiberg-Witten
theory in [22],[48]. The analysis of this section will follow closely that of [48]. The periodic
Toda chain is a system that can be associated to any Lie algebrag. We will need a loop
variablez in order to make contact with Seiberg-Witten theory, leading to the consideration
of the affine Lie algebrag(1). In terms of the affine root systemR(1) the Hamiltonian is given
by

H =
1
2

rankg∑
i=1

p2
i −

∑
α∈R(1)

e−(α,q) (3.1.21)

whereq = q1α1 + ... + qNαN is a linear combination of the simple roots. The dimension
of the phase space therefore equals twice the rank of the Lie algebra. For any irreducible
representationρ of g we can construct a Lax pair for the periodic Toda chain, and the matrix
L which appears in the spectral curve is given by

L = ρ(A)

A =
rankg∑

i=1

(dihi + ciei + fi) + ze0 +
c0

z
f0 (3.1.22)

Here theei, fi are the simple root generators ofg corresponding toαi and−αi respectively.
Thehi are the elements of the Cartan subalgebra ande0 is the highest root generator. The
ci, di are the so-called Flaschka coordinates on the phase space, obtained from theqi, pi in
such a way that a certain product

µ =
rankg∏

i=0

cni
i (3.1.23)
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Chapter 3 The full Seiberg-Witten prepotentials

is time independent. This parameterµ will play the role of the energy scale, introduced in the
previous chapter.

The dimension of any (faithful) irreducible representationρ is bigger or equal toN , thus
creating the possibility of existence of enough integrals of motion. Fixing theci for the
moment, we find that the powers of traces ofL are polynomials in thedi. And what’s more,
these polynomials are invariant under the Lie algebra. The only functionally independent
invariant polynomials inN variables are theN Casimir invariants, suggesting that the number
of independent integrals of motionpreciselyequals half of the dimension of the phase space.
One can check [48] that in general this is indeed the case.

After these preparations we are now ready to define the Seiberg-Witten data for the other
simple Lie algebras, starting with the family of Riemann surfaces.

3.1.3 The Seiberg-Witten family of Riemann surfaces

Roughly speaking, the family of Riemann surfacesΣg necessary for the Seiberg-Witten data
is given by the spectral curve (3.1.20) for the periodic Toda chain, whose Hamiltonian is
defined in terms of the affine Lie algebrag(1). Due to a physical requirement however, we
should not consider the affine algebrag(1) but its dual

(
g(1)

)∨
which is obtained by exchang-

ing long and short roots. For the simply laced algebras, the distinction is absent and we can
continue directly. For the non-simply laced algebras,

(
g(1)

)∨
can be obtained from a simply

laced algebrãg by dividing out an automorphism groupπ of g̃ [33]. In terms of the Dynkin
diagram ofg̃ the automorphism group consists either of reflections (A2N−1, E6, DN+1) or
rotations (D4), see figure 3.1. The spectral curve (3.1.20) is now given in terms of the roots
of g̃ which are invariant underπ. For instance, instead of the highest (long) root ofg, we now
consider the highest (short) root ofg̃ invariant underπ.

Definition 3.3. The family of Seiberg-Witten curves for four-dimensionalN = 2 supersym-
metric Yang-Mills theory with gauge groupg is given by the spectral curve (3.1.20) associated
with the periodic Toda chain for

(
g(1)

)∨
and the smallest representationρ.

Remark 3.4. If Seiberg-Witten theory is to be related to the Toda system, the choice of rep-
resentation (which does not appear in the definition of the Toda system itself) should be
irrelevant. Indeed, we will find that not the spectral curve but the Liouville torus inside its
Jacobian defines the prepotential. The choice of smallest representation is therefore just a
matter of convenience.

Before giving the curves explicitly for each simple Lie algebra, we can already see a lot of
their structure. The Lax operator (3.1.22) can be assigned a natural degree by using the prin-
cipal grading of the Lie algebra [33] and by assigning degrees1, 2, h∨

g todi, ci, z respectively,
whereh∨

g is the dual Coxeter number of the Weyl group ofg. This choice makes the Lax op-
eratorL homogeneous of degree1. We denote this Lie algebraic degree of an objectφ by
[φ]L. The grading is respected by equation (3.1.20) and since this equation is Weyl invariant
the coefficients ofxkzl in P (x, z) are polynomials (of a particular degree) in the Casimir
invariantsuk of g. Since there areN = rank(g) invariants, the spectral curve can be viewed
as a family of curves depending on theN moduli uk. Some Lie algebraic data is given in
table 3.1.
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Figure 3.1: The left side contains the affine Dynkin diagrams for simply laced Lie algebras, the right
side shows the twisted affine Dynkin diagrams for non simply laced Lie algebras. These are obtained
by dividing out the automorphism of the Dynkin diagram of the corresponding simply laced algebra.
The affine roots are coloured black and the numbersni which occur in the definition (3.1.23) ofµ are
indicated for each root.

Lie algebrag (ĝ)∨ hg h∨
g exponents

AN A
(1)
N N + 1 N + 1 1, 2, ..., N

BN A
(2)
2N−1 2N 2N − 1 1, 3, ..., 2N − 1

CN D
(2)
N+1 2N N + 1 1, 3, ..., 2N − 1

DN D
(1)
N 2N − 2 2N − 2 1, 3, ..., 2N − 3, N − 1

E6 E
(1)
6 12 12 1, 4, 5, 7, 8, 11

E7 E
(1)
7 18 18 1, 5, 7, 9, 11, 13, 17

E8 E
(1)
8 30 30 1, 7, 11, 13, 17, 19, 23, 29

F4 E
(2)
6 12 9 1, 5, 7, 11

G2 D
(3)
4 6 4 1, 5

Table 3.1: A list of the Coxeter numbers, dual Coxeter numbers and exponents of the simple Lie
algebras. The degrees of the Casimirs are the exponents +1.
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Chapter 3 The full Seiberg-Witten prepotentials

It is convenient to view the spectral curve as a branched cover of thez sphere. For generic
values of the moduli andz, the Lax operatorL = ρ(A) is the representation of a regular
semisimple elementA of the Lie algebra. This means that a Cartan subalgebra ofg can
be defined by means of the centralizer ofL. Since all Cartan subalgebras are conjugate,
the elementL is conjugate to an elementv(z) · h =

∑N
i=1 vi(z)hi in the standard Cartan

subalgebra. The eigenvaluesx of ρ(L(z)) are therefore given byx = v(z) · ωk where theωk

denote the weights of the representation. The spectral curve can now be denoted by

P (x, z) =
dim ρ∏
k=1

(x − v(z) · ωk) = 0 (3.1.24)

If the dimension of the weight space of one of the weightsω is more than one-dimensional,
we remove all but one factorx − v(z) · ω. Since the weights form a Weyl invariant subset of
the root space, the spectral curve splits according to their Weyl orbits. Representations with
only one Weyl orbit of weights are called miniscule. If the representation is not miniscule,
we focus on the piece containing the highest weight. While discussing the general scenario,
we will assume that this piece is nonsingular2.

We will now discuss the pieces of plumbing that connect the different sheets of the foliation,
starting with the finite values ofx. For generic values ofz, we know thatL(z) is a regular
semisimple element ofg conjugate tov(z) · h. By using the action of the Weyl group, we
can take Im(v) · h to be in the fundamental Weyl chamber. Branch points of the curve occur
for thosez for which ∂P

∂x = 0, in other words if two eigenvalues ofρ(L) come together. This
happens for example whenv(z) · h hits a wall of the fundamental Weyl chamber, i.e. when
v(z) ·αk = 0 for some simple rootαk. If this is the case, then the weightωi and its reflection
ωj = σαk

ωi give the same eigenvalue since

v · ωj = v · σαk
ωi = σαk

v · ωi = v · ωi (3.1.25)

From the expression (3.1.22) for the Lax operator one finds [48] that the curves exhibit a
symmetryz → µ

z whereµ was defined in (3.1.23), see also figure 3.1. Therefore the branch
points come in pairs to form square root branch cuts. There can also be other branch points or
even singular points for whichv(z) · h does not hit a wall of the fundamental Weyl chamber,
and these points are called accidental. We will assume that there are none of these points (it
can be checked explicitly in each case) but even if there are, it is possible to create a cover of
the curve in such a way that the accidental branch points and singularities are removed. This
cover is discussed in detail in section 3.5.

The preceding recipe tells us how to connect the sheets of the cover for finite values ofz.
For z = 0 andz = ∞ there is also a good description of what happens in terms of the root
system ofg. On theP1 base on whichz takes its values we have given branch pointsz±i
corresponding to each simple rootαi of g, whose various lifts to the sheets of the foliation
make up the branch cuts for finite values ofx. Of course any lift of a closed curveC on thez
sphere encircling all the branch points must come back to the sheet it started on since we can
deformC to a trivial curve on thez sphere. Due to the symmetryz → µ

z any lift of the closed
curveC ′ in figure 3.2 must also come back to the same sheet. AddingC andC ′ we see that
any lift of a closed curve encircling all thez−i andz = 0 must also come back to the same
sheet, so that encircling onlyz = 0 has the same effect as encircling all the branch pointsz−i .

2 Actually, this is not a reasonable assumption. Usually the curves are singular but there exists a
natural desingularisation which one should study instead, see section 3.5
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Figure 3.2: Thez-sphere is given twice forA4 together with the branch points:z = 0,∞ and thez±
i .

The curveC in the left picture is trivial and is therefore closed when lifted to the Riemann surface.
Since all branch cuts are hyperelliptic the same is true forC ′ in the right picture.

Therefore, starting on the sheetSω with weightω and then making a circle aroundz = 0,
one ends up on the sheet with weightsω wheres is the Coxeter element of the Weyl group
of g. So the branch cut betweenz = 0 andz = ∞ connects all the sheets whose weights are
in one orbit of the cyclic groupZh∨

g
generated bys.

In figure 3.3 we have given the example of Lie algebraA4 in the10-dimensional represen-
tation [48]. The weights are given for each sheet, and two sheets are connected above the
αi cut if and only if their weights are exchanged underσαi

. The Coxeter elements splits
the weights into two groups of 5, which specifies how the sheets are connected at infinity.
The genus of the curve is thusg = 11, which is the same answer as one gets from a direct
calculation using the equation for the spectral curve given in (3.3.63). This shows that there
are no accidental points.

As another example, we consider againA4 but now in the24-dimensional adjoint represen-
tation. This representation is not miniscule, because the weights split into two disjoint Weyl
orbits: the roots ofA4 each of which has multiplicity1, and the zero vector which has mul-
tiplicity 4. Consequently the Riemann surface splits into two parts, and we concentrate on
the part containing the highest weight and having degree20. The genus of the curve is now
g = 25, see figure 3.4. Again accidental points are absent since a direct calculation of the
genus using the spectral curve (3.3.63) gives the same result.
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α1

α2

α3

α4

1 = [0,-1,0,0]
2 = [-1,0,0,1]
3 = [0,0,1,0]
4 = [0,1,0,-1]
5 = [1,0,-1,0]
6 = [1,-1,0,1]
7 = [-1,0,1,-1]
8 = [0,1,-1,1]
9 = [1,-1,1,-1]
10 = [-1,1,-1,0]

1 2 3 4 5 6 7 8 9 10

z-planex-foliation

Figure 3.3: The Riemann surface forA4 in the antisymmetric 10-dimensional representation. The
genus of the curve isg = 11 and we have labeled the weights by their coefficients in terms of the
fundamental weights. Picture taken from [48]

The list of Seiberg-Witten curves is [48],[30]

AN z +
µ

z
+ xN+1 + u1x

N−1 + ... + uN = 0 (3.1.26)

BN x(z +
µ

z
) + x2N + u1x

2N−2 + u2x
2N−4... + uN = 0

CN

(
z − µ

z

)2

+ x2
(
x2N + u1x

2N−2 + u2x
2N−4... + uN

)
= 0

DN x2
(
z +

µ

z

)
+ x2N + u1x

2N−2 + ... + uN−2x
4 + uNx2 + u2

N−1 = 0

E6
1
2
x3(z +

µ

z
+ u6)2 − q1(x)(z +

µ

z
+ u6) + q2(x) = 0

F4 −8
(

z +
µ2

z

)3

+ s1(x)
(

z +
µ2

z

)2

+ s2(x)
(

z +
µ2

z

)
+ s3(x) = 0

G2 3
(
z − µ

z

)2

− x8 + 2ux6 −
[
u2 + z +

µ

z

]
x4 +

[
v + 2u

(
z +

µ

z

)]
x2 = 0

Although the prepotential forG2 depends only on two variables and therefore trivially satis-
fies the WDVV equations, we have included the Seiberg-Witten curves forG2 in the list. The
curves forE7 andE8 have been omitted because they are big and cumbersome. The expres-
sions forsi(x), qi(x) can be found in appendix A. Note how for simply laced Lie algebras
thez dependence is characterized by

P (z +
µ

z
, x, u1, ..., uN ) = P (z +

µ

z
= 0, x, u1, ..., uN + z +

µ

z
) (3.1.27)

As we will see, there is a direct relation between the A-D-E Seiberg-Witten curves for any
representation on the one hand and the A-D-E Landau-Ginzburg superpotentials [60, 16] or
miniversal deformations of isolated singularities [5] on the other hand. The equation (3.1.27)
helps establish this relation, and the twisting procedure necessary to define the Seiberg-Witten
curves for the non simply laced Lie algebras disturbes it. If it wasn’t for this twisting, there
would be a relation with the corresponding singularities [64].
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Figure 3.4: The Riemann surface forA4 in the 24-dimensional adjoint representation. Since the spectral
curve splits into two parts, we have concentrated on the part containing the highest weight. The genus
of the curve isg = 25. As usual we have labeled the weights by their coefficients with respect to the
fundamental weights.

69



Chapter 3 The full Seiberg-Witten prepotentials

g AN BN CN DN E6 F4 G2

g N 2N − 1 2N 2N − 1 34 46 11

Table 3.2: The genera for the Seiberg-Witten curves ofADE type

For the classical Lie algebras there exists a change of variables that give the curves in the
following standard hyperelliptic form (see also section 3.1.1)

TypeAN : y = z − µ

z

y2 =
(
xN+1 + u1x

N−1 + u2x
N−2 + ... + uN

)2 − 4µ

TypeBN : y = x
(
z − µ

z

)
y2 =

(
x2N + u1x

2N−2 + u2x
2N−4... + uN

)2 − 4µx2

TypeCN : y =
1
x

(
z2 − µ2

z2

)
y2 =

(
x2N + u1x

2N−2... + uN

) (
x2

(
x2N + u1x

2N−2... + uN

)
+ 4µ

)
TypeDN : y = x2

(
z − µ

z

)
y2 =

(
x2N + u1x

2N−2 + ... + uN−2x
4 + uNx2 + u2

N−1

)2 − 4µx4

The curves forE6, F4 andG2 however arenothyperelliptic. For generic values of the moduli
ui all curves within one family have the same genus, and a list of these genera is given in table
3.2.

As a final example, consider figure 3.5 where the curve forE6 is depicted. The27 weights are
labeled by the coefficients in the expansion in terms of fundamental weights, so[1, 0, 0, 0, 0, 0]
stands for the fundamental dominant weightλ1 which is also the highest weight for this rep-
resentation. Each weight has multiplicity one, the27 sheets are connected atz = 0,∞ by the
Coxeter element and the orbits have dimension 12, 12 and 3. Above each simple root there
are6 square root branch cuts, giving the Riemann surface genus34 which is the same as the
value found in table 3.2. This shows that there are no accidental points.

3.1.4 The Seiberg-Witten differential and its derivatives

The second ingredient of the Seiberg-Witten data is a special meromorphic differentialλSW .

Definition 3.5. The Seiberg-Witten differentialλSW is given by

λSW = log(z)dx = d (x log(z)) − x
dz

z
' −x

dz

z
(3.1.28)

where' denotes equality modulo total differentials.

Since we will mainly be interested in the period integrals ofλSW , only its cohomology class
is important. In the specific case of Lie algebraAN , the differential form (3.1.8) reduces to

70



1
=

[0
,-

1
,0

,1
,0

,-
1
]

2
=

[0
,-

1
,0

,0
,-

1
,1

]
3

=
[0

,0
,1

,-
1
,1

,0
1
]

4
=

[1
,0

,-
1
,1

,-
1
,0

]
5

=
[-

1
,1

,1
,-

1
,0

,0
]

6
=

[1
,-

1
,0

,0
,0

]
7

=
[0

,1
,-

1
,0

,0
,0

]
8

=
[-

1
,-

1
,1

,0
,0

,0
]

9
=

[1
,0

,-
1
,0

,0
,1

]
1
0

=
[-

1
,0

,0
,0

,1
,-

1
]

1
1

=
[0

,-
1
,0

,1
,-

1
,1

]
1
2

=
[0

,1
,0

,-
1
,1

,0
]

1
3

=
[1

,1
,0

,-
1
,0

,0
]

1
4

=
[0

,0
,0

,0
,0

,-
1
]

1
5

=
[0

,0
,0

,0
,-

1
,1

]
1
6

=
[0

,0
,0

,-
1
,1

,0
]

1
7

=
[0

,-
1
,-

1
,1

,0
,0

]
1
8

=
[-

1
,0

,0
,0

,0
,1

]
1
9

=
[0

,-
1
,0

,0
,1

,0
]

2
0

=
[0

,0
,-

1
,1

,0
,0

]
2
1

=
[-

1
,0

,1
,0

,0
,0

]
2
2

=
[1

,0
,0

,0
,0

,0
]

2
3

=
[0

,1
,0

,0
,-

1
]

2
4

=
[0

,0
,1

,0
,-

1
,0

]
2
5

=
[1

,0
,-

1
,0

,1
,-

1
]

2
6

=
[0

,-
1
,0

,1
,0

,-
1
]

2
7

=
[0

,0
,1

,-
1
,0

,1
]

Z
-p

la
n
e

X
-f

o
li

at
io

n

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

α 1 α 2 α 4α 3 α 5 α 6

Figure 3.5: The Riemann surface forE6 in the 27-dimensional representation. In thez-plane the branch
cuts are depicted according to the six simple roots ofE6 (in standard notation) and the cut fromz = 0
to ∞ is omitted. Above each root there are six pieces of plumbing connecting the three Coxeter orbits.
The genus of the curve isg = 34.
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(3.1.28) since

log(y + W )dx − log(2)dx = log(z − µ

z
+ z +

µ

z
)dx − log(2)dx = log(z)dx (3.1.29)

In terms of the Toda system,λSW plays the role of the action differentialpdq [48]. The main
special property ofλSW that we are interested in is that its derivatives with respect to the
moduli parametersuk give holomorphic differentials.

3.1.4.1 Holomorphic differentials

In this section, we describe the construction of a basis of holomorphic differential forms on
any Riemann surface, see e.g. [10], [35]. Let the Riemann surface be given by an affine
equation

P (x, z) = 0 (3.1.30)

In particular, we are interested in the affine curves obtained from the Seiberg-Witten family
(3.1.26). In order to make those curves affine, we multiply them with a monomialzk of
minimal degree to makeP a polynomial. Viewing the curve as defining implicitlyx(z), the
branch points are given byPx = 0 andPz 6= 0. Consider the differential form

ω =
φ(x, z)dz

Px
= −φ(x, z)dx

Pz
(3.1.31)

Denoting the degree3 of P by [P ] = d, one finds that forφ a polynomial of degree smaller
or equal tod− 3, the differential formω is nonsingular for all points except the singularities.
In particular,ω is nonsingular in the branch points and due to the condition on the degree
of φ also at infinity. If there are no singular points, a basis of holomorphic forms can be
constructed from theω as above, and their number is1

2 (d− 1)(d− 2) which is in accordance
with the degree-genus formula for nonsingular curves (see e.g. [35]).

We will first check that the derivatives ofλSW are holomorphic outside the singular points.
Denote the Seiberg-Witten curves by

P (x, z, u) =
r∑

i=0

(
z2 + µ

)i
zr−iqi(x, u) (3.1.32)

and the degree ofP is given by

[P ] = [q0] + r (3.1.33)

The derivatives ofλSW with respect to the moduli are given by

∂λSW

∂uk
= −

(
∂

∂uk
x

)
dz

z
=

Puk

z

dz

Px
(3.1.34)

It can be checked explicitly for every Seiberg-Witten curve in (3.1.26) thatqr is moduli
independent. Hence

Puk

z is a polynomial and taking into account that it is homogeneous in

3 Note the difference between the notation [.] of degrees of polynomials in terms of their variables
and the Lie algebraic degree [.]L.
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terms of the Lie algebraic grading, in whichz hash∨
g times the degree ofx, we find that its

polynomial degree is[
Puk

z

]
≤ [q0] + r − 1 − [uk]L = d − 1 − [uk]L (3.1.35)

and since theuk are the Casimir invariants of the Lie algebra, their Lie algebraic degree
is bigger or equal to2. Therefore the derivatives ofλSW are holomorphic for nonsingular
curves.

The restrictions that follow from the singularities are straightforward. In the affine coordinate
patch (not at infinity) one can writex(z) as a convergent power series ifPx 6= 0 using the
implicit function theorem. For singular points, using the method of Puiseux expansions one
can writex(z) as afractionalpower series instead, with a number of different series for each
individual singularity [35]. The formω should be nonsingular when each of these fractional
power series is substituted into it. The singular points which are at infinity are treated in the
same way after a change of variables inP2 to the relevant coordinate patch.

For the classical Lie algebras we have given the curves in standard hyperelliptic form in
(3.1.28) from which it is easy to see that the derivatives ofλSW are holomorphic. ForE6, F4

andG2 explicit computations were done using the computer algebra package Maple, which
show that the derivatives ofλSW are nonsingular not only in the branch points of the curve
and at infinity but even in its singular points. We therefore arrive at the following proposition

Proposition 3.6. The derivatives ofλSW with respect to the moduli are holomorphic for all
simple Lie algebras.

As an example, we consider the curve ofG2 of genus11, given in (3.1.26). The11 holomor-
phic forms are given byφk(x,z)dz

Px
and a list of theφk is given below:

{φk} =
{
x6z, x5z, x4z, x3z, x2z2, x2z, x2, xz, x, xz2, 1 − z2

}
(3.1.36)

On the other hand, the derivatives ofλSW are given by

∂λSW

∂u
=

Pudz

zPx
=

(
2x6z − 2ux4z + 2x2z2 + 2x2

) dz

Px

∂λSW

∂v
=

Pvdz

zPx
= x2z

dz

Px
(3.1.37)

and can be written as linear combinations of the holomorphic forms.

3.1.5 The subset of cycles

The third and final ingredient of the Seiberg-Witten data is a special subset of2N independent
cycles. ForAN in the fundamental representation one can take all cycles and no selection is
necessary. The Seiberg-Witten curves of the other classical Lie algebras in the fundamental
representation possess an involution which makes it easy to identify the special cycles. For
the remaining cases there exists a more general method [48],[29] based on the action of the
Weyl group on the curves. Here we treat only the simply laced Lie algebras, referring the
reader to [29] for the non simply laced ones.
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Chapter 3 The full Seiberg-Witten prepotentials

3.1.5.1 The special cycles for the B, C, D Lie algebras

We regard the curves in their hyperelliptic form (3.1.28). Each of them has the involution
σ(x) = −x. This helps us to identify the special cycles immediately: consider the curves as
defining implicitly y(x), and draw the branch cuts in thex-plane in such a way that the cuts
come in pairsK±

i related byσ. We denote the counterclockwise contour aroundK±
i on the

first sheet byC±
i . The specialA cycles are then defined by

Ai = C+
i − C−

i (3.1.38)

The specialB cycles are the obvious ones going fromK−
i to K+

i on the first sheet and back
again on the second, without intersecting each other.

3.1.5.2 Cycles for simply laced Lie algebras

Here we will discuss the more general method of identifying the special cycles, based on the
action of the Weyl group on the family of curves as discussed in section 3.1.3. This method
is independent of the particular representation used to define the Seiberg-Witten curves and it
solves the Adler-van Moerbeke problem of identifying the Liouville torus inside the Jacobian
of the Toda spectral curve for any representation.

First we note that any liftAω
i of a counterclockwise closed contourCi around only theαi cut

on thez sphere to the sheetSω labeled by the weightω is a closed curve on that sheet. If
αi ·ω = 0 thenAω

i is trivial, otherwise it’s not. Since the branch cuts come in pairs, the cycle
Aω

i is homologous to−A
σαi

ω

i . By multiplying the contribution of each cycle byω · αi the
contributions from the two different sheets add up sinceσαi

ω ·αi = −ω ·αi. It is convenient
to introduce the combinations

Âω
i =

1
2

(
Aω

i − A
σαi

ω

i

)
(3.1.39)

These are the building blocks of theA cycles.

Definition 3.7. The specialA cycles are given by

Ai = Ni,ρ

∑
ω

(ω · αi)Aω
i = Ni,ρ

∑
ω

(ω · αi)Âω
i (3.1.40)

whereAω
i is the lift ofCi to the sheet characterized by the weightω. The absolute value of

ω · αi determines how many times to wind around the cut and its sign determines in what
direction to wind: a positive value means anti-clockwise and negative means clockwise. The
normalisation factorNi,ρ is given by

Ni,ρ =
1∑

ω |(ω · αi)|2 (3.1.41)

On the other hand, we need a set ofB cycles. To define the cycleBi, we draw a number of
lifts Bω

i to the sheetSω of the open curveDi going fromz = 0 to z = z−i on thez sphere.
The number and direction of the lifts is again determined byω · αi: for example,ω · αi = 1
means one strand going up fromz = 0 to z = z−i on Sω, while ω · αi = −2 means two
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strands going down fromz = z−i to z = 0 (see figure 3.6). Then for each Coxeter orbitOk

of sheets, we connect the strands through the cuts betweenz = 0 andz = ∞. To prove that
this gives a closed curveBi, we note that the number of strands going down toz = 0 on
Ok equals the number of strands going up, since

∑
ω∈Ok

(ω · αi) = (
∑

ω∈Ok
ω) · αi = 0.

Therefore we can connect the strands on every Coxeter orbit, which shows thatBi is indeed
closed. Again, it is convenient to introduce the linear combination

B̂ω
i =

1
2

(
Bω

i − B
σαi

ω

i

)
(3.1.42)

We are now ready to define the specialB cycles, see also figure 3.6.

Definition 3.8. The specialB cycles are given by

Bi = Ni,ρ

∑
ω

ω · αiB
ω
i = Ni,ρ

∑
ω

ω · αiB̂
ω
i (3.1.43)

whereBω
i is the lift of the open curveDi to the sheetSω. The numberω · αi decides on the

direction and number of strands. The curve is then closed up through the cuts betweenz = 0
andz = ∞.

The normalisation factorNi,ρ is chosen in such a way that the period integrals ofλSW are
representation independent: onSω we haveλSW = −v(z)·ω dz

z due to (3.1.28) and therefore∮
Ai

λSW = Ni,ρ

∑
ω

ω · αi

∮
Âω

i

λSW = Ni,ρ

∑
ω·αi>0

ω · αi

∮
(Aω

i −A
σαi

ω

i )

λSW

= Ni,ρ

∑
ω·αi>0

ω · αi

∮
Ci

(−v(z) · ω + v(z) · σαi
ω)

dz

z

= −Ni,ρ

∑
ω·αi>0

(ω · αi)2

αi · αi

∮
Ci

2v(z) · αi
dz

z

= −Ni,ρ

∑
ω

(ω · αi)2

αi · αi

∮
Ci

v(z) · αi
dz

z

=
−1

αi · αi

∮
Ci

v(z) · αi
dz

z
(3.1.44)

which is indeed representation independent. A similar reasoning shows that the period inte-
grals ofλSW over theB cycles are independent ofρ. This is also true for the non simply
laced Lie algebras [29].

To show that theA andB cycles just defined have the proper intersection numbers, we pro-
ceed as follows. It is clear thatAi ◦Aj = Bi ◦Bj = 0 andAi ◦Bj = −Bj ◦Ai = γiδij for
some numberγi. To determine theγi, we count the intersection on each sheetSω. Up to the
normalisation, the number of strands from theB cycle that cross the closed curve from theA
cycle is|ω ·αi| and there are also|ω ·αi| copies of theA cycles. Since the contribution to the
intersection is always positive we find that the contribution from the sheetSω is |(ω · αi)|2.
Summing the contributions for all sheets and taking into account the normalisation we find

Ai ◦ Bj = (Ni,ρ)
2
∑
ω

|ω · αi|2δij =
1∑

ω(ω · αi)2
δij (3.1.45)
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Figure 3.6: The Riemann surface forA4 in the 24-dimensional adjoint representation, including the
cycles above the fourth simple root. The fourth root and fourth weight are equal and their norm is two,
thus causing two cycles of typeA to encircle that branch cut and two strands to go up to the branch cut
to form a specialB cycle. The specialA cycle is therefore obtained by adding all typeA cycles in the
picture and the specialB cycle by adding theB type cycles, denoted by dotted lines.
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1 = [0,-1,0]
2 = [-1,0,0]
3 = [0,0,-1]
4 = [0,0,1]
5 = [1,0,0]
6 = [0,1,0]

1 2 5 6

3 4

Figure 3.7: The curve forD3 in the smallest6-dimensional representation. Sending all weightsωi to
−ωi is an involution of the curve, the same involution as sendingx → −x.

Now consider the bilinear form
∑

ω(ω · x)(ω · y) on the linear space where the roots take
their values. This bilinear form is invariant under the Weyl group and therefore we find that
equals a multiple of the Euclidean inner product on the root space. So in the end we find that

Ai ◦ Bj ∼ 1
αi · αi

δij ∼ 1
2
δij (3.1.46)

which is a multiple of the identity as it should be.

The special cycles for curves ofDN have been defined in two ways, which we show to be
identical. The weights come in pairsωi,−ωi which are related throughx → −x because
of (3.1.24). Every weight has nonzero inner product with only one simple root, so that the
A cycles (3.1.38) and (3.7) and the corresponding B cycles are the same. See figure 3.7 for
more details.

3.2 Definition of the prepotential

The Seiberg-Witten data has been introduced, consisting of the family of curvesΣg,ρ (defini-
tion 3.3), the Seiberg-Witten differentialλSW (definition 3.5) and a canonical subset of2N
cyclesAi andBj with the usual intersection numbers (definitions 3.7 and 3.8). We will need
the following lemma

Lemma 3.9. There exists an additional set of cyclesAN+1, ..., Ag with the appropriate in-
tersection numbers with the special cycles, and with the property that the period integrals of
λSW around them are zero.

In particular, this lemma implies that the special cycles are a subset of a canonical homology
basis.

Proof. For the classical Lie algebras, the additionalA cycles are given by theσ-invariant
combinations

Ãi = C+
i + C−

− (3.2.1)
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Chapter 3 The full Seiberg-Witten prepotentials

see also (3.1.38). Since the period integrals are independent ofx, we find thatσ acts as the
identity on them. On the other hand, the involutionσ sendsλSW to −λSW and therefore we
conclude

σ

(∮
Ãi

λSW

)
= −

∮
Ãi

λSW = 0 (3.2.2)

Regarding the non simply laced Lie algebras, we again refer to [29] for the details about the
special cycles. For the simply laced ones, there is a special cycleAi for each rootαi. After
our construction of additional cycles, the number ofA cycles equals the number of branch
cuts for finite values ofx. These are too many cycles since the genus is the number of branch
cuts minus the number of cuts necessary to connect the different Coxeter orbits of weights.
Selecting a subset withg elements (including the special cycles) gives the set ofA cycles
promised by the lemma.

Take a simple rootαi. There are just as many branch cuts aboveαi as there are weightsω
with αi · ω > 0. Corresponding toαi, take a weightωi so thatωi · αi > 0. We introduce the
subsetΩi of the set of weightsΩ by

Ωi = {ω′ ∈ Ω|(ω′ · αi) > 0 , ω′ 6= ωi} (3.2.3)

For everyω′
k ∈ Ωi we define the cycle

Ai(ω′
k) = Âωi

i − αi · ωi

αi · ω′
k

Â
ω′

k
i (3.2.4)

whereÂωi
i is defined in section 3.1.5. Together with the special cycleAi this gives a number

of cycles for each simple rootαi equal to the number of branch cuts forαi.

We calculate the intersection numbers with theBj and find

Ai(ω′
k) ◦ Bj = Nj,ρ

(
Âωi

i − αi · ωi

αi · ω′
k

Â
ω′

k
i

)
◦

∑
ω′′

αi · ω′′Bω′′
j =

Ni,ρ

(
αi · ωi − αi · ωi

αi · ω′
k

αi · ω′
k

)
δij = 0 (3.2.5)

Moreover, we will show that the period integrals ofλSW over the cyclesAi(ω′
k) are zero:∮

Ai(ω′
k)

λSW =
∮

Â
ωi
i

λSW − αi · ωi

αi · ω′
k

∮
Â

ω′
k

i

λSW =

− αi · ωi

αi · αi

∮
Ci

αi · v(z)
dz

z
+

αi · ωi

αi · ω′
k

αi · ω′
k

αi · αi

∮
Ci

αi · v(z)
dz

z
= 0 (3.2.6)

Repeating this construction of cycles for each simple root, we find that the number ofA cycles
now equals the number of branch cuts for finite values ofx. As mentioned before, these are
too many since some cycles are needed to connect the different Coxeter orbits of weights. We
can always make a selection such that the cycles that are left out connect the Coxeter orbits.
Thus we end up with a set ofg canonicalA cycles promised by the lemma.
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Using lemma 3.9 in combination with proposition 3.6, we can define the prepotential. First
we define the new variables

ai =
∮

Ai

λSW (3.2.7)

which we can use to make a local change of variables on the moduli space. To prove that the
change of variables fromui to ai is nonsingular, we note that the integrals of the holomorphic
differentials∂λSW

∂ui
around the cyclesAN+1, ..., Ag are zero. Since theN by g matrix∮

Aj

∂λSW

∂ui
(3.2.8)

must have rankN , we conclude that the determinant of the Jacobi matrix for the change of
variables fromui to ai is nonzero.

This is similar to the situation for Lie algebraAN , which we discussed in section 3.1.1. We
proceed to define thebj by

bj =
∮

Bj

λSW (3.2.9)

and their moduli derivatives

∂bj

∂ai
= Πij (3.2.10)

Since the specialA cycles are a subset of a canonical homology basis and since the holomor-
phic forms∂λSW

∂ai
are canonical with respect to this basis∮
Ai

∂λSW

∂aj
= δij 1 ≤ i ≤ g 1 ≤ j ≤ N (3.2.11)

we find thatΠij is anN byN submatrix of theg by g period matrix, and therefore symmetric.
Due to this symmetry we can locally integrate thebj and find the prepotentialF .

Definition 3.10. The prepotentialF(a1, ..., aN ) is defined locally on the moduli space by

bj =
∂F
∂aj

(3.2.12)

In section 3.1.5 it was shown thatai andbj are representation independent, which shows that
although we have chosen the smallest representation to define the family of curves we could
in fact have used any irreducible representation and the prepotential is independent of this
choice.

The prepotential is not independent however of the choice of the special cycles. In particular,
a symplectic change of these cycles results in the definition of a different prepotential. Such a
symplectic change of cycles has the same effect as a symplectic transformation as discussed
in section 1.2.4, where it was shown that such transformations are contact symmetries of
the WDVV equations. Therefore, the different prepotentials either simultaneously satisfy
the WDVV equations or they all don’t. In the following section a proof is given that the
prepotentials do satisfy the WDVV equations, and this proof does not depend on the choice
of cycles.
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Chapter 3 The full Seiberg-Witten prepotentials

3.3 The WDVV equations

In this section we prove that the prepotentialsF(a1, ..., aN ), introduced in definition 3.10,
satisfy the WDVV system (1.2.2). To do this, we construct in section 3.3.2 a family of
associative commutative algebras with structure constantsCk

ij(a) depending on the moduli
ai and we relate these structure constants with the third order derivatives ofF through (1.2.3)

Fijk =
N∑

l,m=1

Cl
ij(a)Kkl

Kkl = αmFklm (3.3.1)

for some set ofαm, possiblyai dependent. As explained in section 1.2, this proves that the
prepotentialF satisfies the WDVV system. We will use two different methods to prove the
relation 3.3.1: the first method [32] uses Picard-Fuchs equations and flat coordinates, and the
second method [47] uses a more widely applicable residue formula.

3.3.1 Preliminaries: Term orderings and Groebner bases

As preparation for the definition of the associative commutative algebras, we discuss some
basic aspects of the theory of ideals in polynomial rings, see e.g. [11]. For polynomial rings
C[x] in one variable, idealsI are always generated by a single element. This generator is
up to a constant uniquely identified as the element of the ideal with minimal degree inx.
To determine whether a polynomial is in the ideal or not we divide this polynomial by the
generator. If there is a zero remainder the polynomial is inI, otherwise not.

For polynomial rings in two or more variables the situation is more difficult. It can be shown
that every ideal is finitely generated, but the number of generators usually exceeds one. Also,
division by the generators has become less clear: inC[x] one divides by looking at the highest
degree term inx and the rest simply follows. Here it is not clear which term has highest
degree. To fix this one introduces a term ordering, a total ordering which prescribes what is
the leading term of a polynomial. For instance, the lexicographical ordering inC[x, y] sais
that one should first look at the powers ofx occurring in the polynomial and if there are equal
powers then further distinction is made using the powers ofy. As an example we consider
x4 + y2x2 + y2x + yx whose leading term isx4 in the lexicographical term ordering.

Now that we have introduced the term ordering, we can divide polynomials by the ideal
generators to determine whether or not they are inI. However, the order of division influences
the outcome: the remainder after several divisions can contain different representatives of the
same equivalence class inC[x, y] depending on the order of division. AGroebner basisof
generators for the ideal is a particular basis with two special properties: the first one is that the
order of division is irrelevant, the outcome is always the same. The second property is that an
element of the ideal gives zero remainder after division regardless of the term ordering. After
the construction of a Groebner basis, membership of the ideal can therefore be decided using
a straightforward division algorithm.

We will now briefly describe Buchberger’s algorithm [11] to obtain a Groebner basis from
a given set of generatorsp1, ..., pn. First one defines theS-polynomial S(p1, p2) of two
polynomials. Multiplyp1 andp2 with monomials of minimal degree (with respect to the
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term ordering) such that their leading terms become equal. Then subtract one from the other
and this givesS(p1, p2). For instance, in the lexicographical term ordering we have

S(x4 + y2x2 + y2x + yx, yx2 + y3x) =

y
(
y2x2 + y2x + yx + x4

) − x2
(
y3x + yx2

)
=

− y3x3 + y3x2 + y3x + y2x (3.3.2)

The algorithm to produce a Groebner basis is now as follows: first one takes the basis
p1, ..., pn and divides the polynomials amongst each other in random order. If a division
is possible then we replace that polynomial by its remainder. Then we add theS-polynomial
of two random elements in the basis and divide it in random order by the other basis ele-
ments, again replacing it by its remainder if division is possible. We repeat this process over
and over again, until everyS-polynomial of two polynomials is already in the basis. We have
then obtained a Groebner basis.

3.3.2 The family of associative algebras

For each simple Lie algebra, we will construct a family of polynomial algebras over an ideal.
Since they are polynomial, they are automatically commutative and associative. Further-
more, the choice of a unit element will eventually determine the precise linear combination
K appearing in the WDVV equations (1.2.2).

We will again denote the algebraic curves by

P (x, z +
µ

z
, ui) = 0 (3.3.3)

and for our convenience we will consider them as the double cover of a torus

P (x,w, ui) = 0

z +
µ

z
= w (3.3.4)

The functionP is now a polynomial in the two variablesx,w. We introduce the idealI =
〈P, Px〉 in C[x,w]. We will check for each simply laced Lie algebra that thePai

= ∂P
∂ai

span
a subalgebra ofC[x,w]/I.

Definition 3.11. For any simple Lie algebrag whose family of Seiberg-Witten curves is given
by P (x,w) = 0, the family of algebrasA is defined by taking subalgebras ofC[x,w]/I
whereI is the ideal generated byP andPx. These subalgebras are the ones generated by
thePai

and are automatically associative and commutative as subalgebras of a polynomial
algebra.

Since the Seiberg-Witten family of curves is formulated in terms of theui as moduli, we
will give often give the algebras in terms of thePuj

=
∑

j
∂ai

∂uj
Pai

which span the same
subalgebra as thePai

. In fact, given any good local coordinate system on the moduli space,
the algebra can always be defined in terms of the derivatives ofP with respect to those
coordinates. In terms of theuj the structure constants are defined through

Pui
Puj

=
∑
k,q

Ck
ij(α, u)Puk

αqPuq
mod I (3.3.5)
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Chapter 3 The full Seiberg-Witten prepotentials

where
∑

q αqPuq
serves as the unit element of the algebra. The dependence of the structure

constants on the unit element and the coordinatesuj is emphasized. Making the change of
coordinates to theai we find that the structure constants transform as a(2, 1) tensor into

Ck
ij(β, a) =

∑
l,m,n

∂ul

∂ai

∂um

∂aj
Cn

lm(α, u)
∂ak

∂un
(3.3.6)

and the new algebra unit is∑
p

βpPap
=

∑
p,q

αq
∂ap

∂uq
Pap

(3.3.7)

3.3.2.1 Three realizations of the same algebra

It will be useful to have three realizations of the same algebra: to prove that it exists, we will
use the polynomial multiplication

Pui
Puj

=
∑
k,q

Ck
ijPuk

αqPuq
+ Q̄ijPx (3.3.8)

To make the connection with flat coordinates and Landau-Ginzburg theory in section 3.3.3,
we will use an algebra of rational functions whose multiplication reads

wui
wuj

=
∑
k,q

Ck
ijwuk

αqwuq
+

−Q̄ij

Pw
wx =

∑
k,q

Ck
ijwuk

αqwuq
+ Qijwx (3.3.9)

wherewui
= −Pui

Pw
andw plays the role of a one-variable Landau-Ginzburg superpotential.

Finally, to show in subsection 3.3.7 that the algebraic functionw(x, ui) is a superpotential
for any choice of the representation, we will regard the algebra as an algebra of holomorphic
forms [47]

∂λSW

∂ui
⊗ ∂λSW

∂uj
=

∑
k,q

Ck
ij

∂λSW

∂uk
⊗ αq

∂λSW

∂uq
+

Q̄ij

Px

dz

z
⊗ dz

z
(3.3.10)

The elements of the left and right hand sides of this equation are elements ofΩ2, the space of
holomorphic quadratic differentials.

But first we will prove the existence of the algebras in the upcoming paragraphs, using the
polynomial algebra (3.3.8).

Type AN

The family of Riemann surfaces in this case is given by

PAN
(x,w) = w + W (x, ui) = 0 (3.3.11)

whereW is theAN Landau-Ginzburg superpotential. The idealI ⊂ C[x,w] is given by
I = 〈w + W,Wx〉. SincePui

= Wui
depends only onx we find that we can restrict our

attention toC[x]/J whereJ is the ideal generated byWx.

82



Consider the polynomial algebra

Pui
Puj

=
N∑

k,m=1

Ck
ijPuk

αmPum
modPx (3.3.12)

Due to the particularP under consideration, this algebra simplifies to

Wui
Wuj

=
N∑

k,q=1

Ck
ij(α, u)Wuk

αqWuq
modWx (3.3.13)

which is just the well-known Landau-Ginzburg algebra. The algebra exists becauseWx is a
degreeN polynomial inx generating the idealJ in C[x] and theWui

= xN−i form a basis
of C[x]/J . Since it is a polynomial algebra, it is automatically associative and commutative.

As an example, we give the structure constantsCk
ij(αq = δq,4, u) of A4.

(C1)
k
j =



− 2
5u2 − 1

5u2 + 9
25u2

1
6
25u1u2

3
25u1u3

− 3
5u1 − 2

5u2 − 1
5u3 0

0 − 3
5u1 − 2

5u2 − 1
5u3

1 0 0 0


(3.3.14)

(C2)
k
j =



− 3
5u1 − 2

5u2 − 1
5u3 0

0 − 3
5u1 − 2

5u2 − 1
5u3

1 0 0 0

0 1 0 0



(C3)
k
j =



0 − 3
5u1 − 2

5u2 − 1
5u3

1 0 0 0

0 1 0 0

0 0 1 0
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Chapter 3 The full Seiberg-Witten prepotentials

(C4)
k
j =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Type BN

The family of Riemann surfaces in this case is given by

PBN
(x,w) = xw + WBC = xw + x2N + u1x

2N−2 + u2x
2N−4... + uN = 0 (3.3.15)

whereWBC is the typeBC Landau-Ginzburg superpotential. The idealI is given byI =
〈xw +WBC , w +WBC

x 〉. SincePui
= WBC

ui
depends only onx we find that we can restrict

our attention toC[x]/J with an idealJ . To see whatJ should be, we calculate a Groebner
basis ofI in terms of a lexicographical order in whichw > x and we find that the only
element in the basis not depending onw is W BC − xWBC

x . To see that this is an element of
I we note that

WBC − xWBC
x =

(
xw + WBC

) − x
(
w + WBC

x

)
(3.3.16)

The quotient ringC[x]/J consists of polynomials up to degree2N and sinceW BC −xWBC
x

contains only even degree terms thePuk
span a subalgebra consisting of polynomials of even

degree inC[x]/J .

As an example, we give the structure constantsCk
ij(αq = δq,3, u) of the algebra forB3 and

note that this is not the Landau-Ginzburg algebra of typeBC [64]. This is no coincidence:
due to the twisting procedure fromg(1) to

(
g(1)

)∨
in the definition of the Seiberg-Witten fam-

ily of curves, the relationship between the Seiberg-Witten algebra and the Landau-Ginzburg
algebra is lost for the non simply laced Lie algebras. For the simply laced ones the two
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algebras are in fact the same, as we will see.

(C1)
k
j =



− 1
5u2 + 9

25u2
1

1
5u3 + 3

25u1u2 − 3
25u1u3

− 3
5u1 − 1

5u2
1
5u3

1 0 0



(C2)
k
j =



− 3
5u1 − 1

5u2
1
5u3

1 0 0

0 1 0



(C3)
k
j =



1 0 0

0 1 0

0 0 1


Type CN

The family of Riemann surfaces in this case is given by

PCN
(x,w) = w2 − 4µ + x2WBC = 0 (3.3.17)

The idealI is given byI = 〈w2 − 4µ + x2WBC , 2xWBC + x2WBC
x 〉. SincePui

depends
only on x we find that we can restrict our attention toC[x]/J with an idealJ whereJ is
generated by2xWBC + x2WBC

x . The quotient ringC[x]/J consists of polynomials up to
degree2N +1 and since2xWBC +x2WBC

x contains only odd degree terms the polynomials
of even degree span a subalgebra inC[x]/J . The dimension of this subalgebra however is
N + 1, and we only haveN polynomialsPui

. Still thePui
which have degree inx greater

or equal to2 span yet a smaller subalgebra, because the lowest degree inx occurring in the
ideal generator is degree3.

Type DN

The family of Riemann surfaces in this case is given by

PDN
(x,w) = x2w + WD =

x2w + x2N + u1x
2N−2 + ... + uN−2x

4 + uNx2 + u2
N−1 = 0 (3.3.18)
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The idealI is given byI = 〈x2w + WD, 2xw + WD
x 〉. SincePui

= WD
ui

depends only on
x we find that we can restrict our attention toC[x]/J with an idealJ . To see whatJ should
be, we calculate a Groebner basis ofI in terms of a lexicographical order in whichw > x
and we find that the only element in the basis not depending onw is 2W D − xWD

x . To see
that this is an element ofI we note that

2WD − xWD
x = 2

(
x2w + WD

) − x
(
2xw + WD

x

)
(3.3.19)

The quotient ringC[x]/J consists of polynomials up to degree2N and since2W D − xWD
x

contains only even degree terms thePuk
span a subalgebra consisting of polynomials of even

degree inC[x]/J . Note that this is precisely the Landau-Ginzburg algebra for typeDN .

Type E6

Until now, the polynomialP (x,w, ui) did not contain terms mixingw with the moduliui.
This allowed us to consider polynomial algebras in one variable. Any ideal is then generated
by just one polynomial and calculations are done by dividing by this polynomial. ForE6

this is no longer the case. Since mixing does occur, we are forced to use the two-variable
ring C[x,w] in which it is no longer guaranteed that an ideal is generated by one polyno-
mial. Nevertheless one can construct a finite Groebner basis for the ideal in such a way that
calculations in the quotient ring can be done by using a division algorithm to divide out the
elements of the basis.

An additional help in explicit computations is the grading that is present. As mentioned be-
fore, the principal grading of the affine Lie algebra causes the Riemann surfaces and Seiberg-
Witten differential to be graded as well, and in turn the algebra that we are constructing is
graded. Since the dependence on the Casimirsui is always polynomial, we can predict the
dependence of the structure constantsCk

ij(u) on the Casimirs. The only thing we have to
calculate explicitly are the coefficients of the various terms, which are just numbers. For
example, if we takeαq = δq,6 then the algebra becomes

Pui
Puj

=
∑

k

Ck
ij(u)Puk

Pu6 modI (3.3.20)

The degree ofP is 27, the degrees of the Casimirsu1, ..., u6 are respectively2, 5, 6, 8, 9, 12
and thusC3

12(u) for example has degree11. The terms that constituteC3
12 are thereforeu3

1u2,
u2u3 andu1u5 and only their coefficients need to be determined.

Explicit computation of the Groebner basis (using a lexicographical term ordering) shows
that the quotient algebraC[x,w]/I is 57-dimensional, and the algebra generated by thePui

is a 6-dimensional subalgebra. The fact that it’s a closed subalgebra is by no means trivial.
This subalgebra is precisely the Landau-Ginzburg algebra [21].

Type F4

Again we have used Groebner bases theory together with the grading to determine the struc-
ture constants. Explicit computation of the Groebner basis (using a lexicographical term
ordering) shows that the quotient algebraC[x,w]/I is 78-dimensional, and the algebra gen-
erated by thePui

is a nontrivial 4-dimensional subalgebra. Just like in the other non simply
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laced cases this is not the Landau-Ginzburg algebra of typeF4, which is given in [64]. The
structure constantsCk

ij(αq = δq,4, u) are given by4 [26]:

(
CT

1

)k

j
=



u1

(
250
243u4

1 − 10
9 u1u2− 7

3u3

) − 25
54u3

1 + 1
4u2 − 5

3u2
1 1

100
81 u4

1u2 + 140
27 u3

1u3− u1

(− 5
9u1u2− 7

3u3

) −6u3− 2u1u2 0
2
3u1u

2
2 − 4

3u1u4 − 2u2u3

− 2
9u1u2u3 − 2

3u2
3+

1
6u4 − 5

27u2
1u3 − 2

3u1u3 0
100
243u4

1u3 − 10
27u2

1u4

10
9 u2

1u
2
3 − 1

3u1u2u4− − 1
2u2

3 − 5
18u2

1u4 −u1u4 0

u3u4 + 50
81u4

1u4



(
CT

2

)k

j
=



− 25
54u3

1 + 1
4u2

5
24u1

3
4 0

u1

(− 5
9u1u2 − 7

3u3

)
1
4u2 0 1

1
6u4 − 5

27u2
1u3

1
12u3 0 0

− 1
2u2

3 − 5
18u2

1u4
1
8u4 0 0



(
CT

3

)k

j
=



− 5
3u2

1
3
4 0 0

−6u3 − 2u1u2 0 −6u1 0

− 2
3u1u3 0 0 1

−u1u4 0 − 9
2u3 0


4 To get a better lay-out, we give the transpose matrices

(
CT

i

)k

j
= (Ci)

j
k.

87



Chapter 3 The full Seiberg-Witten prepotentials

(
CT

4

)k

j
=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



It can be checked explicitly that these are indeed the structure constants of an associative
commutative algebra.

Type G2

Finally, we arrive at theG2 case. Although the WDVV equations are trivially satisfied,
we give the family of associative algebras to show how it fits the general pattern. Since the
Groebner basis of the ideal generated byP andPx is not so big, we can give it explicitly:{

288u2x9 + 192x13 − 384ux11 − 1728x5µ − 12u2x3v − 48u2xµ +

24uvx5 + 576uµx3 + 16u4x5 + 3xv2 − 112x7u3 + 48x7v,

−288x11 + 528ux9 − 344u2x7 − 90vx5 + 2592µx3 −
54vxw − 432xuµ + 114x5u3 − 24x3uv − 10u4x3 + 5u2xv + 10u3xw,

−162vw2 + 30u3w2 + 288x12u − 528x10u2 −
54vx8 + 354u3x8 − 124u4x6 + 144vux6 − 2592ux4µ +

24u2x4v + 10u5x4 + 432u2x2µ − 27x2v2 + 648vµ − 120u3µ

}
(3.3.21)

The resulting structure constants withαq = δq,2 are

C1 =

 − 2
3u2 − 2

3uv + 16µ

1 0


C2 =

 1 0

0 1


Lie algebraG2 constitutes the only example where due to the twisting procedure the parame-
terµ appears explicitly in the structure constants, making it painstakingly clear that the direct
relation between this algebra and the Landau-Ginzburg algebra is lost.

After having introduced the prepotentialF and family of algebrasA separately, it remains
to relate the two. There are two methods known in the literature of doing this. One method
exploits the existence of flat coordinates in the Landau-Ginzburg context and interprets the
relation (3.3.1) as Picard-Fuchs equations [32]. It has the drawback of not being directly
applicable to the non simply laced Lie algebras, for which flat coordinates in general do not
exist. The other method is more widely applicable and uses a residue formula [47], [39]. We
will explain both methods in detail below.
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3.3.3 The Gauss-Manin connection, flat coordinates and Picard-Fuchs equations

This section deals only with the simply laced Lie algebras, since there is a natural connection
between the structure constants of the algebra and the definition of flat coordinates for them.
The non simply laced algebras are discussed in the next section.

Given a family of subvarietiesX ⊂ Pn fibered over a moduli spaceM, there is a method dat-
ing back to Griffiths [23] of obtaining a set of differential equations for period integrals when
differentiated with respect to the moduli. Such equations are called Picard-Fuchs equations.
Let X be given by an affine equationP (x1, ..., xn) = 0 and take a closed cycleΞ ⊂ Pn

which enclosesX. We consider integrals of the type

ζ(l) =
∫

Ξ

φ

P l
Ω (3.3.22)

whereφ is a polynomial andΩ is the form onPn given in local coordinates by

Ω = dx1 ∧ ... ∧ dxn (3.3.23)

in the coordinate patch wherexn+1 6= 0. Differentiatingζ(l) with respect to the moduli, we
get

∂ζ(l)

∂uj
=

∫
Ξ

( ∂φ
∂uj

P l
− l

φ ∂P
∂uj

P l+1

)
Ω (3.3.24)

The main idea is to perform a series of partial integrations to reduce the powers ofP occurring
in the denominator: each term of the form∫

Ξ

l
ψ ∂P

∂xk

P l+1
Ω (3.3.25)

equals

±
∫

Ξ

d

(
ψ

P l
dx1 ∧ ... ∧ d̂xk ∧ ... ∧ dxn

)
∓

∫
Ξ

∂ψ
∂uk

P l
Ω (3.3.26)

So we have to divideφ ∂P
∂uj

by the various∂P
∂xk

in order to do those partial integrations. By
chosing a term ordering and constructing a Groebner basis for the idealI generated by the
∂P
∂xk

one makes sure that the order of division is irrelevant.

In caseX is a miniversal deformation of a singularity ofADE type [5], C[x1, ..., xn]/I
is called the Jacobian ring and its dimension the Milnor number of the singularity. The
∂P
∂ui

generate a finite-dimensional subalgebra of the Jacobian ring and one can consider the
integrals

ζ
(l)
i =

∫
Ξ

∂P
∂ui

P l
Ω (3.3.27)

Using the algebra together with the partial integrations one gets the following set of differen-
tial equations

∂ζ
(l)
i

∂uj
− lCk

ijζ
(l+1)
k +

∑
n

Γ(n)k
ij ζ

(l−n)
k = 0 (3.3.28)
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Chapter 3 The full Seiberg-Witten prepotentials

More formally this is the equation of a flat connection, called the Gauss-Manin connection, on
a cohomology bundle overM of which theζ

(l)
i are sections. One can check the integrability

conditions of the connection separately for each power ofP in the denominator, which leads
to the following identities on the structure constants

[Ci, Cj ] = 0

∂Ck
ij

∂ul
=

∂Ck
lj

∂ui
(3.3.29)

whereCi is the matrix with coefficientsCk
ij . The first of these equations expresses the as-

sociativity of the algebra, and is automatically fulfilled. The second puts an integrability
condition on the structure constants, so thatCk

ij = ∂2T k

∂ui∂uj
for some set of functionsT k.

Saito [58] then goes on to construct the flat coordinates, in terms of which the connection
Γ(0)k

ij vanishes.

As an alternative to the integrals overΞ, we can use the higher dimensional analogue of
Cauchy’s residue theorem [10] to study period integrals over closed cycles onX itself, on
which P = 0. We will consider the family of Riemann surfacesΣ as subvarieties ofP2

fibered overM. We have indicated in section 3.1.1 how to differentiate cohomology elements
with respect to the moduli. We consider the subringB of the full cohomology ring, generated
by ∂λSW

∂ui
and ∂2λSW

∂ui∂uj
with i ≤ j. It is not hard to see that these are all linearly independent

and therefore constitute a basis{χi} of the subringB. We will need the following lemma

Lemma 3.12. [21, 31] For simply laced Lie algebras, the following Picard-Fuchs equations
hold in the cohomology subringB

∂2λSW

∂ui∂uj
−

∑
k

Ck
ij(u)

∂2λSW

∂uk∂uN
+

∂w
∂ui∂uj

− ∂Qij

∂x√
w2 − 4µ

dx = 0 (3.3.30)

where the structure constantsCk
ij(u) are defined through (3.3.5), usingαq = δq,N .

Proof. Usingw = z + µ
z , the first order derivative ofλSW equals

∂λSW

∂ui
=

∂ log(z)
∂ui

dx =
1
z

dz

dw

∂w

∂ui
dx =

∂w
∂ui√

w2 − 4µ
dx (3.3.31)

and therefore the second order derivative equals

∂2λSW

∂ui∂uj
=

∂w
∂ui∂uj√
w2 − 4µ

dx −
w ∂w

∂ui

∂w
∂uj(√

w2 − 4µ
)3 dx (3.3.32)

Substituting the algebra (3.3.9) withαq = δq,N , performing a partial integration on the part

containingQij and noting that ∂2w
∂uk∂uN

= 0 finishes the proof of the lemma. This last fact
follows from (3.1.27), which ensures that

∂w

∂uN
= −PuN

Pw
= −1 (3.3.33)
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Denoting the basis ofB by {χi} we can reformulate the Picard-Fuchs equations as

∂

∂ui
χj +

∑
k

Γk
ijχk = 0 (3.3.34)

thus again defining a flat connection. Since

∂2λSW

∂uk∂uN
= − w ∂w

∂uk

∂w
∂uN(√

w2 − 4µ
)3 dx (3.3.35)

we can split up the connectionΓk
ij = Γ(1)k

ij + Γ(3)k
ij according to the number of powers of

the square roots occurring in the denominator. For the term with three powers, the flatness
condition reduces to the two identities (3.3.29) on the structure constants of the algebra.

It turns out that the flat coordinatesti from singularity theory precisely causeΓ(1)k
ij (t) = 0,

and therefore again get the interpretation of flat coordinates. In terms of them, the Picard-
Fuchs equations read(

∂2

∂ti∂tj
−

∑
k

Ck
ij(t)

∂2

∂tk∂tN

)∮
Γ

λSW = 0 (3.3.36)

where we integrated over an arbitrary cycleΓ. We can now prove the following theorem

Theorem 3.13. [32] For simply laced Lie algebras, the prepotentialF and structure con-
stantsCk

ij(β, a) are related by

∂3F
∂ai∂aj∂ak

=
N∑

l,m=1

Cl
ij(β, a)βmFklm (3.3.37)

Therefore the prepotentialF(a1, ..., aN ) satisfies the WDVV system.

Proof. Changing the coordinates fromti to ai in equation (3.3.36), we find∑
i,j

(
∂ai

∂tr

∂aj

∂ts
−

N∑
t

Ct
rs(t)

∂ai

∂tt

∂aj

∂tN

)
∂2

∂ai∂aj

∮
Γ

λSW +

∑
i

(
∂2ai

∂tr∂ts
−

∑
t

Ct
rs(t)

∂2ai

∂tt∂tN

)∮
Γ

∂λSW

∂ai
= 0 (3.3.38)

Ordinarily, the two halves of this equation need not vanish separately. However, since

ai =
∮

Ai

λSW (3.3.39)

we find thatai satisfies (3.3.36) and therefore the second half of equation (3.3.38) vanishes.
Taking the cycleΓ = Bk and definingβm = ∂am

∂tN
, the first half can be rewritten as

∂3F
∂ai∂aj∂ak

=
∑

l,m,r,s,t

(
∂tr
∂ai

∂ts
∂aj

Ct
rs(t)

∂al

∂tt

) (
∂am

∂tN

)
∂3F

∂ak∂al∂am

=
∑
l,m

Ck
ij(β, a)βm

∂3F
∂ak∂al∂am

(3.3.40)
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3.3.4 Picard-Fuchs equations for the non simply laced algebras

For simply laced Lie algebras, the family of associative algebrasA is precisely the Landau-
Ginzburg algebra. This gives us the direct connection between the flat coordinates and the
algebra, expressed in equation (3.3.36). For non simply laced Lie algebras, the associative
algebras are not the Landau-Ginzburg algebras [64]. For example, there is only one Landau-
Ginzburg algebra of typeBC whereas there are two separate algebras in the Seiberg-Witten
context. Nevertheless we can show that for the classicalB andC algebras, a similar relation
to (3.3.37) still holds, now connecting the Landau-Ginzburg flat coordinates to the Seiberg-
Witten algebras. This allows us to continue the proof.

Proposition 3.14. [27] For the non simply laced Lie algebras of typeBN andCN the relation
(3.3.37) holds. Therefore the corresponding prepotentials satisfy the WDVV equations.

Proof. We first define theBC Landau-Ginzburg algebra. In terms of its flat coordinates the
multiplication structure reads

φi(t) = −∂WBC

∂ti

φi(t)φj(t) = Ĉk
ij(t)φk(t) + QijW

BC
x (3.3.41)

Furtermore, it is not hard to show thatQij is divisable byx and we expressQij as a linear
combination

Qij = x
∑

k

D̂k
ij(t)φk (3.3.42)

In [32] the following set of Picard-Fuchs equations was obtained(
∂2

∂ti∂tj
−

N∑
k=1

Ĉk
ij(t)

∂2

∂tk∂tN
−

N∑
k=1

N∑
n=1

εdntn
h∨

g

D̂k
ij

∂2

∂tk∂tn
+

N∑
k=1

D̂k
ij

1
h∨

g

(1 − dk)
∂

∂tk

)∮
Γ

λSW = 0 (3.3.43)

where theĈk
ij(t) are the structure constants of theBC Landau-Ginzburg theory, thedn are

the degrees of the Lie algebra andε = 1(−1) for BN (CN ). Making a change of coordinates
to the ai just like we did for simply laced algebras and using the fact that theai satisfy
(3.3.43), we get

∑
i,j

∂ai

∂tr

∂aj

∂ts
−

∑
t

Ĉt
rs(t)

∂ai

∂tt

∂aj

∂tN
−

∑
k,n

D̂t
rs

εdntn
h∨

g

∂ai

∂tn

∂aj

∂tt

 ∂2

∂ai∂aj

∮
Γ

λSW = 0

(3.3.44)
Unfortunately, this is not in the form of (3.3.38) and we cannot continue as before. We do see
however that the fourth term in (3.3.43) does not contribute to (3.3.44). So we go back to the
first three terms of (3.3.43) and with the benefit of hindsight we introduce new objectsγk

ij(t)
as

Ĉk
ij(t) = γk

ij(t) −
∑
k,q

D̂l
ij

εdntn
h∨

g

γk
nl (3.3.45)
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We substitute this into the first three terms of (3.3.43) and obtain(
∂2

∂ti∂tj
− γk

ij(t)
∂2

∂tk∂tN

)∮
Γ

λSW +

∑
l,n

D̂l
ij

εdntn
h∨

g

(
∂2

∂tl∂tn
− γk

ln(t)
∂2

∂tk∂tN

) ∮
Γ

λSW (3.3.46)

This expression consists of two parts. Making the change of coordinates to thea variables
gives two equations that have to vanish separately, one for each of the two parts of (3.3.46).
Each of these equations then boils down to the relation

Fijk = γl
ij(a)

∂am

∂tN
Fklm (3.3.47)

and proves that the WDVV equations hold if theγk
ij(t) are well-defined and if they are the

structure constants of some associative algebra. This is the subject of the following lemma.

Lemma 3.15. The objectsγk
ij(t) defined through relation (3.3.45) exist and they are precisely

the structure constantsCk
ij(t) of the Seiberg-Witten algebra in terms of the coordinatesti.

The Seiberg-Witten algebras were defined separately forBN andCN in section 3.3.2.

Proof. We will restrict ourselves to theBN case here, the proof forCN is very similar. We
will rewrite (3.3.41) in such a way that it becomes of the form

φi(t)φj(t) =
r∑

k=1

γk
ij(t)φk(t) + Rij

[
x∂xWBC − WBC

]
(3.3.48)

As a first step, we use (3.3.45):

φiφj =
[
Ĉi · −→φ + D̂i · −→φ x∂xWBC

]
j

=

[(
γi − D̂i ·

r∑
n=1

2ntn

2r − 1
γn

)
· −→φ + D̂i · −→φ x∂xWBC

]
j

=

[
γi · −→φ − D̂i ·

r∑
n=1

2ntn

2r − 1
γn · −→φ + D̂i · −→φ xWBC

]
j

(3.3.49)

The notation
−→
φ stands for the vector with componentsφk and we use a matrix notation for

the structure constants. There are two things about this equation that we would like to change:
the first thing is that we want the structure constants to be defined by the first term, so we
would like the middle term to vanish. The second thing is that we want the third term to
contain the generatorWBC − xWBC

x of the idealJ . As a first step towards resolving both
these problems, we will take part of the third term and cancel it with the middle term. To do
this, we will use the following equation which expresses thatW BC is homogeneous in the
Lie algebraic grading

xWBC
x +

∑
n

2ntn
∂WBC

∂tn
= 2NWBC (3.3.50)
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Chapter 3 The full Seiberg-Witten prepotentials

Using this equation we can cancel the middle term of (3.3.49) with part of the third term at
the expense of introducing new terms which then have to be canceled etcetera. This recursive
process will end however and yield the desired result. First we split up the third term of
(3.3.49) as follows[

D̂i · −→φ xWBC
x

]
j

=
[
− 1

2N − 1
D̂i · −→φ xWBC

x +
(

1 +
1

2N − 1

)
D̂i · −→φ xWBC

x

]
j

=

[
− D̂i

2N − 1
· −→φ

(
2NWBC −

N∑
n=1

2ntnφn

)
+

2ND̂i

2N − 1
· −→φ xWBC

x

]
j

(3.3.51)

Using the Landau-Ginzburg algebra (3.3.41) we rewrite the products ofφ occurring here,
thus rewriting (3.3.49) as

φiφj =

[
γi · −→φ − D̂i

2N − 1
·
∑

n

2ntn

(
γn · −→φ − Ĉn · −→φ

)
−

D̂i

2N − 1
·
∑

n

2ntnD̂n · −→φ xWBC
x

]
j

+
2ND̂i

2N − 1
· [xWBC

x − WBC

]
j

(3.3.52)

We now use (3.3.45) again to rewrite the second term in the first line. Then we find

φiφj =

[
γi · −→φ − D̂i

2N − 1
·
∑

n

2ntn

(
−D̂n ·

∑
m

2mtm

2N − 1
γm · −→φ +

D̂n · −→φ xWBC
x

)]
j

+
2ND̂i

2N − 1
· [xWBC

x − WBC

]
j

(3.3.53)

Note that by cancelling one term, we automatically calculate moduloxW BC
x −WBC . We can

now repeat the whole process on the term between round brackets in the first line of (3.3.53).
This is a recursive process and each step will introduce an extra factor ofD̂i. To see that the
recursive process stops, we will prove that theD̂i are nilpotent matrices.

The degree ofQij is [Qij ] = 2N + 1 − 2(i + j). Dividing by x the degree becomes2N −
2(i + j). Since[φk] = 2N − 2k one cannot divideQij

x by φk for j ≥ k and therefore the
matrix D̂i defined in (3.3.42) is lower triangular and thus nilpotent.

3.3.5 Duality transformations and Picard-Fuchs equations

The proof of the WDVV equations by means of the Picard-Fuchs equations makes particu-
larly clear the role that the duality transformations, discussed in section 1.2.4, play in Seiberg-
Witten theory [25]. We have defined the special2N cycles on the family of Riemann surface
as part of a canonical basis of cycles, and the proof of the WDVV equations does not change
at all if we apply a symplectic transformation to the cycles. So although different choices of
cycles give different prepotentials, all of these prepotentials will satisfy the WDVV system
(1.2.2).

94



3.3.6 The residue formula

An alternative to the approach of Picard-Fuchs equations is given by the residue formula [47],
whose origins lie in the theory of integrable systems [39].

A common way of proving Riemann’s bilinear relations on a Riemann surfaceΣ is to cut open
the surface to obtain a fundamental4g-sided polygonΠ and use Cauchy’s residue theorem
onΠ. We will use the same method to obtain a residue formula for the third order derivatives
of F .

We start by rewritingFijk = ∂3F
∂ai∂aj∂ak

as follows

Fijk =
∂

∂ak
Fij =

∂

∂ak

∑
m

∮
Am

ωi

∮
Bm

ωj =

∑
m

∮
Am

∂ωi

∂ak

∮
Bm

ωj +
∑
m

∮
Am

ωi

∮
Bm

∂ωj

∂ak
= 0 +

∑
m

∮
Am

ωi

∮
Bm

∂ωj

∂ak
=

∑
m

(∑
m

∮
Am

ωi

∮
Bm

∂ωj

∂ak
−

∑
m

∮
Bm

ωi

∮
Am

∂ωj

∂ak

)
=

∑
res

(
χi

∂ωj

∂ak

)
(3.3.54)

whereχi is a function which is single valued onΠ but not onΣ, defined in such a way
thatdχi = ωi on Π. It is always possible to find suchχi sinceΠ is simply connected, and
therefore the holomorphic differentialωi = ∂λSW

∂ai
is exact onΠ.

In the derivation of (3.3.54) essential use has been made of the fact that∮
Ai

∂λSW

∂aj
= δij (3.3.55)

This relation holds for all Lie algebras due to the particular construction of cycles in section
3.1.5 and lemma 3.9. We can work outFijk further and find

Proposition 3.16. [47] The following residue formula holds

Fijk =
∑

res

(
ωi ⊗ ωj ⊗ ωk

dx ⊗ dz
z

)
=

∑
res

(
Pai

Paj
Pak

(zPz)2Px

)
(3.3.56)

Proof. We can calculate∂ωj

∂ak
= ∂2λSW

∂aj∂ak
keeping in mind that we can throw away any terms

that do not contribute to the residue. Due to the second differentiation ofλSW , poles arise at
the zeroes ofPx. These mark the branch points of the curve, so we need precisely two factors
Px in the denominator to get a contribution to the residue. We then find up to terms that do
not contribute to the residue

∂2λSW

∂aj∂ak
= − ∂2x

∂aj∂ak

dz

z
=

∂

∂aj

(
Pak

Px

)
dz

z

=
Pajak

Px

dz

z
− d

dx

(
Paj

Pak

Px

)
dz

zPx

= − d

dx

(
Paj

Pak

Px

)
dz

zPx
(3.3.57)
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Performing a partial integration we find [47]∑
res

(
χi

∂ωj

∂ak

)
=

∑
res

(
−χi

d

dx

(
Paj

Pak

Px

)
dz

zPx

)
=∑

res

(
dχi

dx

Paj
Pak

P 2
x

dz

z

)
=

∑
res

(
Pai

Paj
Pak

(zPz)2Px
dx

)
(3.3.58)

and this ends the proof.

In the proof of the residue formula, the calculation of the second order derivatives ofλSW is
similar to the one for the Picard-Fuchs method. The crucial difference however is that some
terms can be neglected because they do not contribute to the residue. This makes the residue
formula applicable also for the non simply laced Lie algebras. After having obtained the
above proposition, the proof thatF satisfies the WDVV system becomes trivial.

Corollary 3.17. The relation (3.3.37) follows from the definition of the algebra together with
the residue formula of proposition 3.16. Therefore we conclude again that the prepotential
F satisfies the WDVV system, using now the residue formula instead of the Picard-Fuchs
equations.

3.3.7 Representation independence of the family of associative algebras

We have shown in section 3.1.5 that the period integrals ofλSW over the firstN cycles of
typeA and the firstN cycles of typeB are independent of the representationρ of g chosen
to define the family of spectral curves. Therefore also the prepotentialF and the proof of the
WDVV equations are representation independent.

Since a family of associative algebras is connected to a function satisfying the WDVV equa-
tions, this strongly suggests that the familyA defined in section 3.3.2 exists for any represen-
tation and is independent of it. If so, then the spectral equation

P (x,w, ui) = 0 (3.3.59)

implicitly defines a one-variable Landau-Ginzburg superpotentialw(x, ui).

Proposition 3.18. For any irreducible representationρ the familyA of algebras, see (3.3.10),
is defined and is independent ofρ. Therefore the implicitly defined functionw(x, ui) is a one-
variable Landau-Ginzburg superpotential for anyρ.

Proof. Since the period integrals ofλSW are representation independent, the derivation of
the residue formula (3.3.56) is representation independent. Since the WDVV equations hold,
we find that∑

res

(
ωi ⊗ ωj ⊗ ωk

dx ⊗ dz
z

)
=

∑
k,l

Ck
ij(a)

∂al

∂tN

∑
res

(
ωk ⊗ ωl ⊗ ωm

dx ⊗ dz
z

)
(3.3.60)

thus showing that the algebra (3.3.10)

ωi ⊗ ωj =
∑
k,l

Ck
ij(a)

∂al

∂tN
ωk ⊗ ωl mod

dz

z
(3.3.61)

is representation independent.
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As an example, we will consider the Lie algebraA4 in the 5, 10 and 24 dimensional repre-
sentations5. The spectral curves are given by

P5 = w + x5 + u1x
3 + u2x

2 + u3x + u4 (3.3.62)

P10 = w2 +
(
−11x5 − 4u1x

3 − 7u2x
2 + (−u2

1 + 4u3)x + 2u4 − u1u2

)
w

−x10 − 3x8u1 + x7u2 + (−3u2
1 + 3u3)x6 + (−11u4 + 2u1u2)x5 +

(u2
2 + 2u1u3 − u3

1)x
4 + (−4u2u3 − 4u4u1 + u2

1u2)x3 +
(−7u4u2 + u2

2u1 − u2
1u3 + 4u2

3)x
2 + (−u3

2 + 4u4u3 − u4u
2
1)x −

u2
4 + u2

2u3 − u4u1u2 (3.3.63)

5 The 24-dimensional adjoint representation is not miniscule and we consider only the part of the
curve containing the highest weight
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P24 = x20 + 10u1x18 + (39u2
1 + 10u3)x16 + (3.3.64)

(105u3
1 + 25u2

2 + 25(−u2
1 + 2u3)u1)x14 +

(533/4u4
1 + 92u1u

2
2 + 200(u4 + w)u2 +

29/2(−u2
1 + 2u3)u2

1 − 95/4(−u2
1 + 2u3)2)x12 +

(74u5
1 + 248u2

1u
2
2 + 400(u4 + w)u1u2 − 82(−u2

1 + 2u3)u3
1 +

625(u4 + w)2 + 130(−u2
1 + 2u3)u2

2 − 90(−u2
1 + 2u3)2u1)x10 +

(−7/2u6
1 + 406u3

1u
2
2 − 235(u4 + w)u2

1u2 − 149(−u2
1 + 2u3)u4

1 −
53u4

2 + 354(−u2
1 + 2u3)u1u

2
2 − 475(−u2

1 + 2u3)(u4 + w)u2 −
231/2(−u2

1 + 2u3)2u2
1 + 1750(u4 + w)2u1 + 5(−u2

1 + 2u3)3)x8 +
(−30u7

1 + 883/2u4
1u

2
2 − 995(u4 + w)u3

1u2 − 131(−u2
1 + 2u3)u5

1 −
102u1u

4
2 + 625(u4 + w)2u2

1 + 700(u4 + w)u3
2 +

591(−u2
1 + 2u3)u2

1u
2
2 − 1075(−u2

1 + 2u3)(u4 + w)u1u2 −
107(−u2

1 + 2u3)2u3
1 − 1875(−u2

1 + 2u3)(u4 + w)2 +
285/2(−u2

1 + 2u3)2u2
2 − 10(−u2

1 + 2u3)3u1)x6 +
(−47/4u8

1 + 302u5
1u

2
2 − 535(u4 + w)u4

1u2 − 61/2(−u2
1 + 2u3)u6

1 +
55(−u2

1 + 2u3)3u2
1 − 750(u4 + w)2u3

1 + 600(u4 + w)u1u
3
2 +

550(−u2
1 + 2u3)u3

1u
2
2 + 1875(u4 + w)2u2

2 + 45/4(−u2
1 + 2u3)2u4

1 −
325(−u2

1 + 2u3)(u4 + w)u2
1u2 − 135(−u2

1 + 2u3)u4
2 −

2500(−u2
1 + 2u3)(u4 + w)2u1 + 240(−u2

1 + 2u3)2u1u
2
2 +

250(−u2
1 + 2u3)2(u4 + w)u2 − 180u2

1u
4
2 + 25(−u2

1 + 2u3)4)x4 +
(u9

1 + 183/2u6
1u

2
2 − 115(u4 + w)u5

1u2 + 14(−u2
1 + 2u3)u7

1 − 95u3
1u

4
2 +

50(u4 + w)2u4
1 − 165(u4 + w)u2

1u
3
2 + 190(−u2

1 + 2u3)u4
1u

2
2 +

27u6
2 + 3000(u4 + w)2u1u

2
2 − 65(−u2

1 + 2u3)(u4 + w)u3
1u2 +

45(−u2
1 + 2u3)2u5

1 − 99(−u2
1 + 2u3)u1u

4
2 − 6250(u4 + w)3u2 +

625(−u2
1 + 2u3)(u4 + w)2u2

1 − 225(−u2
1 + 2u3)(u4 + w)u3

2 +
187/2(−u2

1 + 2u3)2u2
1u

2
2 + 50(−u2

1 + 2u3)2(u4 + w)u1u2 +
52(−u2

1 + 2u3)3u3
1 + 1250(−u2

1 + 2u3)2(u4 + w)2 −
5(−u2

1 + 2u3)3u2
2 + 20(−u2

1 + 2u3)4u1)x2 −
96(u4 + w)u6

1u2 − 27/4u4
1u

4
2 + 158(u4 + w)2u5

1 + 2u10
1 +

52(−u2
1 + 2u3)u5

1u
2
2 + 1950(u4 + w)2u2

1u
2
2 + 38(−u2

1 + 2u3)2u6
1 −

356(−u2
1 + 2u3)(u4 + w)u4

1u2 + 500(−u2
1 + 2u3)2(u4 + w)2u1 −

27/2(−u2
1 + 2u3)u2

1u
4
2 + 17u7

1u
2
2 − 3750(u4 + w)3u1u2 +

14(−u2
1 + 2u3)u8

1 − 315(−u2
1 + 2u3)(u4 + w)u1u

3
2 + 3125(u4 + w)4 +

53(−u2
1 + 2u3)2u3

1u
2
2 + 1125(−u2

1 + 2u3)(u4 + w)2u2
2 −

460(−u2
1 + 2u3)2(u4 + w)u2

1u2 + 50(−u2
1 + 2u3)3u4

1 −
27/4(−u2

1 + 2u3)2u4
2 + 108(u4 + w)u5

2 − 299(u4 + w)u3
1u

3
2 +

18(−u2
1 + 2u3)3u1u

2
2 − 200(−u2

1 + 2u3)3(u4 + w)u2 +
32(−u2

1 + 2u3)4u2
1 + 550(−u2

1 + 2u3)(u4 + w)2u3
1 + 8(−u2

1 + 2u3)5
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Defining the idealI = 〈P, Px〉 ⊂ C[x,w], explicit computations show that indeed the
subalgebras ofC[x,w]/I generated by thePui

havepreciselythe same structure constants
(3.3.14).

3.4 The perturbative limit for type A Lie algebras

We have claimed in section 2.1 that the nonperturbative prepotentialF implicitly defined
through

ak =
∮

Ak

λSW
∂F
∂aj

=
∮

Bj

λSW (3.4.1)

can be expanded in terms of the parameterµ as

F = Fclass + Fpert +
∞∑

k=1

ck(a)µk (3.4.2)

HereFclass is a quadratic polynomial in theai which is irrelevant for the WDVV equations,
andFpert is the perturbative limit that was studied extensively in chapter 2. Following [15]
we will show explicitly in the case of Lie algebraAN that the nonperturbative prepotential is
of the form (3.4.2) and the perturbative part is identified as

Fpert =
−1
4

N+1∑
i,j=1

(ai − aj)2 log

(
(ai − aj)2

µ

2
)

(3.4.3)

where
∑

i ai = 0. This is the expression appearing in (2.2.3).

We start by fixing the choice of cycles for the hyperellipticAN curve (3.1.4). The branch
points of the curve, viewed as definingy(x), are given by

W (x) ± 2µ =
N+1∏
i=1

(x − ei) ± 2µ = 0 (3.4.4)

where
∑

i ei = 0. Denoting the branch points byx±
k , we let the cycleAk run on the first

sheet around the branch cut fromx−
k to x+

k . This gives us the cyclesA1, ..., AN . We define
Bk by the cycle running fromx−

N+1 to x−
k on the first sheet and back fromx−

k to x−
N+1 on

the second sheet. The Seiberg-Witten differential, whose period integrals around these cycles
we will calculate, is given by (3.1.8)

λSW =
xW ′dx

W
√

1 − 4µ2

W 2

(3.4.5)

where we forget the termlog(2)dx because it doesn’t contribute significantly to the period
integrals. In the limitµ → 0, the branch cut fromx−

k to x+
k shrinks to the single pointek.

The cycleAk is not affected by taking this limit, since the homology class determines the
outcome of the period integrals and therefore we can keep the cycle fixed. So we can make
an expansion of the period integralak in powers ofµ by expandingλSW . This is done by a
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Taylor series expansion inµ which converges for smallµ because the cycleAk never comes
close to the pointsei whereW is small. The expansion ofλSW reads

λSW =
∞∑

m=0

αm(2µ)2m xW ′dx

W 2m+1
(3.4.6)

where

αm =
Γ(m + 1

2 )
Γ( 1

2 )Γ(m + 1)
(3.4.7)

This reducesλSW to a rational differential on a sphere with punctures at theek and we
can evaluate the period integral with the Cauchy residue theorem. The expansion ofak is
therefore

ak =
∮

Ak

xW ′dx

W
+

∑
m≥1

αm(2µ)2m

∮
Ak

xW ′dx

W 2m+1

=
∮

Ak

N+1∑
i=1

xdx

x − ei
+

∑
m≥1

αm(2µ)2m

∮
Ak

1
2m

(
−d

[ x

W 2m

]
+

dx

W 2m

)
= ek +

∑
m≥1

αm(2µ)2m

∮
Ak

dx

W 2m
(3.4.8)

Here the residue of the first term was calculated inek. The residue of the second term can be
found in closed form by noting that

1
W 2m

=
1

(x − ek)2m

∏
j 6=k

1
(x − ej)2m

=
1

(x − ek)2m
Sk(x)m =

∞∑
p=−2m

1
(2m + p)!

∂2m+pSm
k (x = ek)

∂x2m+p
(x − ek)p (3.4.9)

where we used a Taylor series expansion ofSm
k (x) =

∏
j 6=k

1
(x−ej)2m aroundx = ek. We

find the residue to be

ak = ek +
∑
m≥1

αm

2m(2m − 1)!
(2µ)2m ∂2m−1Sk(ek)m

∂e2m−1
k

(3.4.10)

The evaluation of the period integrals over theB cycles is more delicate. Since these cycles
run from x−

N+1 to x−
k on one sheet and back again on the other, we cannot take the limit

µ → 0 and at the same time avoid the pointsek whereW = 0. The expansion (3.4.6) of
λSW is therefore not valid because the expansion parameter2µ

W can become big. To work
around this problem, we introduce an auxiliary parameterξ and consider theξ-dependent
integral

bk(ξ) =
∮

Bk

xW ′dx

W

√
1 −

(
2ξµ
W

)2
(3.4.11)
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The idea is to use the fact that the differential has a convergent power series expansion inξ for
small values of|ξ| and normal values ofµ, do some manipulations on the integral and then
make an analytic continuation toξ = 1 in the end. This should give a valid series expansion
of bk in µ.

The integral ofλSW on the second sheet equals the integral on the first sheet because on the

second sheet
√

W 2 − 4µ2 = −W
√

1 − 4µ
W 2 (which gives a minus sign) and the orientation

of the integration curve is reversed (which gives another minus sign). Therefore

bk(ξ) = 2
∫ x−

k

x−
N+1

xW ′dx

W

√
1 −

(
2ξµ
W

)2

= 2
∫ x−

k

x−
N+1

∞∑
m=0

αmξ2m(2µ)2m xW ′dx

W 2m+1
= 2

∫ x−
k

x−
N+1

N+1∑
i=1

xdx

x − ei
+

2
∑
m≥1

αmξ2m(2µ)2m

∫ x−
k

x−
N+1

1
2m

(
−d

[ x

W 2m

]
+

dx

W 2m

)
(3.4.12)

Whenever we calculate parts of this integral explicitly, we will only keep the terms from the
upper boundaryx−

k , remembering that there is a similar contribution fromx−
N+1 accompa-

nying it. Since the branch point equation (3.4.4) givesW (x−
k ) = 2µ, we find that

bk(ξ) = 2(N + 1)x−
k + 2

N+1∑
j=1

ej log(x−
k − ej)−

2
∑
m≥1

αm

2m
ξ2mx−

k + 2
∑
m≥1

αm

2m
ξ2m(2µ)2m

∫ x−
k

x−
N+1

dx

W 2m
(3.4.13)

The third term contains a series inξ which converges forξ = 1, so the analytic continuation
for that term is trivial. To evaluate the last term, we use an expansion of1

W 2m in terms of
partial fractions

1
W 2m

=
N+1∑
l=1

0∑
p=−2m

Q
(2m)
l,p (x − el)p (3.4.14)

Using again the Taylor expansion (3.4.9) we recognize the coefficientsQ
(2m)
l,p as

Q
(2m)
l,p =

1
(2m + p)!

∂2m+pSl(el)m

∂e2m+p
l

(3.4.15)

This expansion of 1
W 2m allows a separation of the last term in (3.4.13) according to the

powers(x − el)p occurring in it. For example, the series forp = −1 converges forξ = 1
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because it equals

2
N+1∑
l=1

(∫ x−
k

x−
N+1

1
x − el

) ∑
m≥1

αm

2m(2m − 1)!
(2µ)2m ∂2m−1Sl(el)m

∂e2m−1
l

=

2
N+1∑
l=1

(al − el) log(x−
k − el) (3.4.16)

For eachp, one can check [15] that the series converges forξ = 1. Moreover, one can show
that the terms forp ≤ −2 can be expressed by power series inµ. To see this, we note that
the terms(x−

k − ek)p+1 ∼ µp+1 which occur after the integration of 1
W 2m are singular, but

on the other hand there are enough compensating termsµ2m to soak up the singularities.

To show that (3.4.2) holds, the remaining task is to identify the part containing the pertur-
bative prepotential. Forgetting the terms that contribute to the classical andO(µ) parts, we
focus on the first three terms of (3.4.13) together with thep = −1 part of the fourth term

Zk = (2(N + 1) − 2 log(2)) x−
k + 2

N+1∑
j=1

aj log(x−
k − ej) (3.4.17)

where we have used the summation formula
∑

m≥1
αm

2m = log(2). We remind the reader
once again that similar terms withx−

k replaced byx−
N+1 have been omitted. Using (3.4.4)

we rewriteZk as

Zk = (2(N + 1) − 2 log(2)) x−
k + 2ak log(x−

k − ek) + 2
∑
j 6=k

aj log(x−
k − ej) =

(2(N + 1) − 2 log(2)) x−
k + 2ak log(2) + 2ak log(µ)−

2
∑
j 6=k

ak log(x−
k − ej) + 2

∑
j 6=k

aj log(x−
k − ej) =

2(N + 1)x−
k + 2 log(2)(ak − x−

k ) + 2ak log(µ) − 2
∑
j 6=k

(ak − aj) log(x−
k − ej) (3.4.18)

Using once more (3.4.4) together with (3.4.8) we can express everything in terms of theak

as follows

Zk = (2(N + 1) + 2 log(µ)) ak − 2
∑
j 6=k

(ak − aj) log(ak − aj) + O(µ) (3.4.19)

Keeping only the terms of the perturbative part and reintroducing the contributions from the
lower bound of the integral, we end up with

2ak log(µ) − 2
∑
j 6=k

(ak − aj) log(ak − aj)−

2aN+1 log(µ) + 2
∑

j 6=N+1

(aN+1 − aj) log(aN+1 − aj) (3.4.20)

We want to write this as the derivativedFpert

dak
of the perturbative prepotential (3.4.3). There

is a technical complication (typical for the typeAN case) due to
∑

i ei = 0 which implies
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∑N+1
i=1 ai = 0. SubstitutingaN+1 = −∑N

i=1 ai in Fpert we see that

dFpert

dak
=

∂Fpert

∂ak
− ∂Fpert

∂aN+1
(3.4.21)

Substituting (3.4.3) in this expression indeed gives (3.4.20) up to polynomials in theai and
up to a redefinitionµ → µh∨

g whereh∨
g = N + 1 is the dual Coxeter number ofAN . The

polynomials can be absorbed in the classical part of the prepotential. We conclude that, as
promised in section 2.1, the perturbative prepotential is the limit of the full prepotential under
µ → 0.

Proposition 3.19. [15] In the limit µ → 0, the fullAN prepotential can be written as

F = Fclass + Fpert +
∞∑

k=1

ck(a)µk (3.4.22)

whereFclass is independent ofµ and polynomial in theai, andFpert equals the perturbative
prepotential (3.4.3), also considered in (2.2.3).

3.5 Prym varieties and the Adler-van Moerbeke problem

We recall the Adler-van Moerbeke question posed in section 3.1.2: the periodic Toda chain
for Lie algebrag has a Lax pair with spectral parameter for any irreducible representation
ρ of g. The flow of the system linearizes on the Jacobian of the spectral curve (3.1.20)
for the Lax operatorA(z). Since the Toda system itself is representation independent, the
question is whether the Liouville torus can be embedded in a natural way in the Jacobians
of each of the spectral curves. This question was answered positively for simply laced Lie
algebras in sections 3.1.3 and 3.2. There it was shown that there exists a set of2N cycles and
N holomorphic forms whose periods over these cycles generate a submatrix of the period
matrix. Therefore they make up an abelian subvariety of dimensionN = rank(g).

To give more background on this Adler-van Moerbeke problem, we discuss in this section
its solution purely in terms of representation theory of finite groups. This work was done
independently ofN = 2 supersymmetric Yang-Mills theory, by mathematicians such as
Kanev [34], Merindol [52] and especially Donagi [17]. We start by decomposing the Jacobian
of a curve equipped with an action of a finite group on it. Then we show that in the case of
the Toda system, where the role of the finite group is played by the Weyl group ofg, for any
irreducible representation ofg there is an abelian variety occurring in the decomposition of
the Jacobian variety of the spectral curve. This abelian subvariety is called the distinguished
Prym and it solves the Adler-van Moerbeke problem and is therefore the same as the one
which defines the prepotential.

3.5.1 Decomposition of Jacobians with finite group action

First we recall some elements of Riemann surface theory. Given a Riemann surfaceΣ of
genusg, a divisor of degreed is a formal linear combination

∑
i niPi of pointsPi in Σ and

with numbersni ∈ Z such that
∑

i ni = d. A principal divisor is a divisor of degree zero
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Chapter 3 The full Seiberg-Witten prepotentials

which consists precisely of the zeroes and poles of a meromorphic function, counting their
multiplicity. There is an equivalence relation between divisors, two divisors being equivalent
if their formal difference

∑
i miPi (which is a divisor of degree zero) is a principal divisor.

This makes the divisor classes of degree zero into an abelian group which by the Jacobi
inversion theorem is isomorphic to the Jacobian ofΣ. The isomorphism itself is given by the
map ∑

i

niPi →
∑

i

ni

(∫ Pi

P0

ω1, ...,

∫ Pi

P0

ωg

)
(3.5.1)

whereP0 is a fixed point ofΣ. Now given a double coverf : Σ̃ → Σ of Riemann surfaces,
one can construct a corresponding Norm mapNf on their Jacobians by

Nf

(∑
i

niPi

)
=

∑
i

nif(Pi) (3.5.2)

The Norm map is surjective and the connected component of its kernel containing the identity
element is an abelian subvariety ofJac(Σ̃).

Definition 3.20. A classical Prym variety is the connected component containing the identity
of the kernel of the Norm mapNf : Jac(Σ̃) → Jac(Σ) belonging to a double coverf : Σ̃ →
Σ of Riemann surfaces. In terms of the generag̃, g of the Riemann surfaces the Prym variety
has genus̃g − g.

The JacobianJac(Σ̃) splits into two parts: the preimage ofJac(Σ) and the Prym. An alter-
native way of looking at this splitting is to consider the involutionσ on Σ̃ that is a result of
the double cover. This involution acts on the space of holomorphic differentialsΩ(Σ̃) by a
reducible representation which splits into irreducible ones

Ω(Σ̃) = M1 ⊗ I ⊕ M2 ⊗ ε (3.5.3)

HereI denotes the 1-dimensional trivial representation,ε denotes the also 1-dimensional sign
representation and theMi are the multiplicity spaces, counting how many times each of the
two irreducible representations occur inΩ(Σ̃). This is the so-called isotypical decomposi-
tion of Ω(Σ̃) into a direct sum of two spaces of dimensionsM1 andM2. The spaceΩ(Σ̃)
can of course be decomposed further into a direct sum of 1-dimensional subspaces but this
decomposition is not canonical. The previously found splitting of the Jacobian variety ofΣ̃
corresponds precisely with (3.5.3), leading to an alternative definition of the Prym variety as
the part ofJac(Σ̃) which corresponds with the sign representation. This interpretation leads
to the definition of generalized Prym varieties.

Definition 3.21. Given a (Galois) cover̃Σ → Σ̃/G for a finite groupG acting onΣ̃, the
space of holomorphic differentials has a decomposition

Ω(Σ̃) = ⊕iMi ⊗ Vi (3.5.4)

into isotypic pieces coming from the irreducible representations of the finite groupG. Since
the space of holomorphic differentials can be identified with the tangent space of the Jaco-
bian, the Jacobian also has an isotypic decomposition6

Jac(Σ̃) ∼ ⊕iPrymi ⊗ Vi (3.5.5)

6 This is also called Poincare’s irreducibility theorem with G-action [57].
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where thePrymi ⊗ Vi are subvarieties of the Jacobian. ThePrymi are called generalized
Prym varieties.

Note that the generalized Prym variety for the trivial representation corresponds withJac(Σ̃/G).
The decomposition (3.5.5) is not quite an isomorphism but rather an isogeny. This means that
there is a surjective map fromJac(Σ̃) to⊕iPrymi⊗Vi with finite kernel. Isogenies give rise
to an equivalence relation between abelian varieties and (3.5.5) states that the two abelian va-
rieties on the left and right hand side are within the same equivalence class. Due to the equiva-
lence relation there has to be an isogeny going back, i.e. a mapµ : ⊕iPrymi⊗Vi → Jac(Σ̃)
which is surjective and has finite kernel. This map is given by the sum map

µ(v1, ..., vN ) = v1 + ... + vN (3.5.6)

where+ denotes the group operation on the abelian varietyJac(Σ̃).

3.5.2 Spectral and parabolic covers

Given an arbitrary representationρ of g, we can consider the spectral curveΣρ defined in
(3.1.20). Its Jacobian will decompose for several reasons: first of all, the representation is
in general reducible and this causes the curve to be reducible as well. Secondly, the weights
of the irreducible subrepresentationsρi come in Weyl orbits and each of these orbits gives
a connected componentΣλ of the spectral curve, labeled by the highest weightλ in the
orbit. Finally, the Weyl group acts onΣλ and as explained in the previous section, this
causes the Jacobian to split. One of the problems in finding the isotypic components of this
decomposition is that there are infinitely manyΣλ to consider. However, it is shown in [17]
that they fall into finitely many birational equivalence classes. We will now describe how this
comes about.

First we find another way of looking at theΣλ. Given the Lie algebrag and one of it weights,
we construct a covergλ of g as follows. Recall that Chevalley’s theorem states that there is
an isomorphism between theG-invariant polynomials on the Lie algebraC[g]G and the Weyl
invariant polynomials on the Cartan subalgebraC[h]W . This implies that there is a unique
G-invariant polynomial

Pλ : g → C[x] (3.5.7)

whose restriction to the Cartan subalgebra is the Weyl invariant polynomial∏
µ∈Wλ

(x − µ) (3.5.8)

This allows us to construct a covergλ of the Lie algebrag for each weightλ by

gλ = {(g, x) ∈ g × C|Pλ(g)(x) = 0} (3.5.9)

Since there is a mapA from P1 to g takingz to its imageA(z) defined in (3.1.22) we can
pull back the covergλ to a coverΣλ of P1.

Definition 3.22. Given a simple Lie algebrag, one of its weightsλ and the mapA : P1 → g
we define the spectral coverΣλ as

Σλ =
{
(x, z) ∈ C2|Pλ(A(z))(x) = 0

}
(3.5.10)
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In other words, in caseA(z) is regular semisimple one can take one of its conjugatesv(z)
in the Cartan subalgebra and considerΣλ to be the curve (3.1.24). In contrast to the infi-
nite number of spectral covers, we will now discuss a single cover called the cameral cover
together with rational surjective maps to each of the spectral covers. Consider a simple Lie
algebrag and its Cartan subalgebrah. The Weyl groupW of g acts onh and we can con-
struct the coverπ1 : h → h/W . One can take the semisimple part of an arbitrary element
g ∈ g into h by conjugation, and we subsequently take its image underπ1 to define the map
π2 : g → h/W .

Definition 3.23. The cover̂g of the Lie algebrag is defined by

ĝ = {(g, h) ∈ g × h|π2(g) = π1(h)} (3.5.11)

So a generic fibre over a pointg ∈ g consists of a number ofh ∈ h, one for each Weyl
chamber, which is conjugate tog.

This cover has an action of the Weyl group on it. We can again use the mapA : P1 → g to
construct the pull-back̂Σ of ĝ, which is a cover ofP1 called the cameral cover.

Definition 3.24. The cameral cover̂Σ → P1 is defined by

Σ̂ =
{
((g, h), z) ∈ ĝ × P1|A(z) = g

}
(3.5.12)

A generic fibre of this cover again consists of an element in each of the Weyl chambers, hence
the name cameral cover.

Since the Weyl group acts on the cameral cover, its Jacobian also has an isotypic decom-
position. In an attempt to find the decomposition for the infinite number of spectral covers
from the cameral cover, we will construct a natural rational map fromΣ̂ to Σλ for eachλ. If
this map were to be birational, then the Jacobians of the spectral covers would all have the
same isotypic decomposition. We will find that this is not the case, and then we go on to
construct a finite number of subcoversΣP of the cameral cover together with birational maps
from a spectral coverΣλ to a correspondingΣP . Finally, we obtain the decomposition of the
Jacobians of theΣP from the decomposition for the cameral cover.

Consider for each weightλ of g the mapjλ : ĝ → g × C given byjλ(g, h) = (g, λ(h)). We
find thatPλ ◦ jλ = 0 because

Pλ(jλ(g, h)) = Pλ(g, λ(h)) = Pλ(g)(λ(h)) =
∏

µ∈Wλ

(x − µ(t))|x=λ(t) = 0 (3.5.13)

where we have conjugatedg to obtain a Cartan subalgebra element. SincePλ ◦ jλ = 0 this
gives a surjective mapjλ : ĝ → gλ which can be pulled back usingA to a covering map
Jλ : Σ̂ → Σλ. Therefore the cover̂Σ contains all theΣλ. This rational surjective map is
however not birational becausêΣ is too big. We will see that certain intermediate covers
Σ̂ → ΣP → P1 are small enough to give birational maps. TheΣP will be defined for
each parabolic subgroupP of the Weyl groupW , thus giving a finite number of birational
equivalence classes of spectral curves.

The Weyl group is generated by reflections in a set of simple roots∆. A parabolic subgroup
WP of the Weyl group is a subgroup generated by reflections in a subset∆′ of ∆. Taking
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an arbitrary weightλ of g, its stabilizer group is a parabolic subgroupWP . Defining the
subcovergP = ĝ/WP of g, it is easy to see that the mapjλ : ĝ → gλ factors throughgP

sinceλ is invariant underWP . We thus arrive at the restriction mapjλ : gP → gλ. Pulling
back withA we obtain a surjective rational mapJλ : ΣP → Σλ between covers ofP1. The
original mapJλ could not be birational because the generic fibre ofΣ̂ over a pointz ∈ P1

contains|W | points and that ofΣλ contains less. But the restricted map can be (and in fact
is) birational since the number of points in a generic fibre is equal.

3.5.3 Accidental singularities

Now that we have found a birational mapJλ : ΣP → Σλ, we wonder when this map is an iso-
morphism. That this can happen was shown forg = AN in the fundamental representation in
section 3.1.2, where it was shown thatΣλ is smooth and simply parametrizes the eigenvalues
of A(z). In caseΣλ is singular,Jλ cannot be an isomorphism becauseΣP is smooth. As we
already noted in section 3.1.2,Σλ will become singular wheneverλ andwλ accidently take
the same values for some regular semisimple elementA(z). These singularities are called
accidental and their occurrence depends more on the weightλ than on the particular map
A(z). Following this reasoning, one obtains the following lemma.

Lemma 3.25 ([17]). For Jλ : ΣP → Σλ to be an isomorphism, a necessary condition is that
λ is the multiple of a fundamental weight.

So in factJλ is usually not an isomorphism becauseΣλ is singular in regular semisimple
points. So our assumption made below (3.1.24) on the smoothness ofΣλ is not very rea-
sonable. Here we see how to amend it: we should consider its natural desingularizationΣP

instead.

3.5.4 The distinguished Prym

We have argued why it’s better to study the smooth parabolic coversΣP instead of the possi-
bly singular spectral coversΣλ. However, the parabolic covers no longer have a natural action
of the Weyl groupW acting on them. So we cannot think of the splitting of its Jacobian as the
result of the Weyl group acting on the cover. However, by letting the parabolic Weyl subgroup
WP act onΣ̂ and dividing it out to obtainΣP , we obtain the mapπP : Σ̂ → ΣP . We can
use this map to pull backJac(ΣP ) to Jac(Σ̂) and intersect it with the isotypic components
of Jac(Σ̂). To see what happens, we can look at this intersection on the level of the tangent
spaces, i.e. the spaces of holomorphic differentialsΩ(Σ̂) andΩ(ΣP ). The holomorphic dif-
ferentials onΣP pull back toWP invariant holomorphic differentials on̂Σ, thus showing that
the intersection ofJac(ΣP ) with Prymi ⊗ Vi is Prymi ⊗ (Vi)WP where(Vi)WP denotes
theWP invariant subspace ofVi. This way one obtains a decomposition

Jac(ΣP ) ∼ ⊕iPrymi ⊗ (Vi)WP (3.5.14)

We now come back to the Adler-van Moerbeke question whether an abelian subvariety of
fixed genus sits inside the Jacobian of all spectral curves. If such an abelian subvariety exists
we will call it universal. We now see that this question is reduced to a question in finite goup
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theory, namely if there exists an irreducible representationρi of W such that the dimension
of (Vi)WP is nonzero. This question was answered in [40],[41] and is formulated as follows.

Theorem 3.26. The generalized Prym variety corresponding with the reflection represen-
tation of the Weyl group has genus equal to rank(g) and occurs with nonzero multiplicity
inside the Jacobians of all spectral curves, therefore it is universal. Moreover, this is the only
universal Prym variety if and only ifg is a classical Lie algebra.

This abstract formulation of the answer to the Adler-van Moerbeke problem is consistent
with the more concrete result found earlier in section 3.1.5. Instead of letting the Weyl group
act on the space of holomorphic differentials, we there had the dual picture where it acts on
the space of cycles. The special subset ofA cycles constructed there precisely transforms
under the reflection representation of the Weyl group, thus showing that it indeed occurs with
nonzero multiplicity.

3.5.5 The distinguished Prym as a Jacobian

The whole problem of the Jacobian of the spectral curve being too big to be the Liouville
torus can be avoided if the distinguished Prym variety (i.e. the Liouville torus) is itself the
Jacobian of some smaller curve. Indeed, the Prym is principally polarized so it very well
could be a Jacobian, but on the other hand it is known that not all Pryms are Jacobians [55].
For classical Lie algebras, the Pryms are indeed Jacobians. For typeAN this is trivial because
the spectral curve for the fundamental representation has genusN , and the spectral curves
(3.1.28) for the other classical groups in the fundamental representation have an involution
x → −x besides the hyperelliptic involutiony → −y. Dividing out certain combinations of
these involutions gives the genusN Prym variety as the Jacobian of a curve [17]. For other
Lie algebras, this rather ad hoc method involves trying to recognize involutions of spectral
curves for the simplest representation and figuring out whether or not the distinguished Prym
occurs as the Jacobian of one of the quotients. That this does not always work is shown in
the example of Lie algebraG2, also discussed in [17].

Let us recall the genus11 spectral curve forG2 in the smallest representation

3
(
z − µ

z

)2

− x8 + 2ux6−
[
u2 + z +

µ

z

]
x4 +

[
v + 2u

(
z +

µ

z

)]
x2 = 0 (3.5.15)

We introduce the variables

w = z +
µ

z

r = x2

s = x
(
z − µ

z

)
t = x

(
w − r2 +

v

3

)
(3.5.16)

which occur when one starts to divide out the symmetries of the curve. The curve written in
terms of the variablesr, t has genus two, and so it was suggested in [17] that its Jacobian is
the distinguished Prym. The curve is

P (r, t) = 3t2 − 4r5 + 4r4u − 4
3
r3u2 − 12rµ + r2v = 0 (3.5.17)
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and its holomorphic differentials are given by

ω1 =
dt

Pr

ω2 =
rdt

Pr
(3.5.18)

and it is readily seen that these do not correspond to the derivatives of the Seiberg-Witten
differential (3.1.37). Therefore the Jacobian of this genus two curve is not the Liouville torus
of the Toda system forG2. The question whether or not the distinghuised Prym is a Jacobian
for all simple Lie algebras remains unanswered.
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The Seiberg-Witten curves for E6 and F4





Appendix A

This appendix contains data on the family of curves for Lie algebrasE6 andF4. TheE6

curve reads

PE6 =
1
2
x3(z +

µ

z
+ u6)2 − q1(x)(z +

µ

z
+ u6) + q2(x) = 0

where the polynomialsq1 andq2 are given by

q1 = 270x15 + 342u1x
13 + 162u2

1x
11 − 252u2x

10 + (26u3
1 + 18u3)x9

−162u1u2x
8 + (6u1u3 − 27u4)x7 − (30u2

1u2 − 36u5)x6 +
(27u2

2 − 9u1u4)x5 − (3u2u3 − 6u1u5)x4 − 3u1u
2
2x

3 − 3u2u5x − u3
2,

q2 =
1

2x3
(q2

1 − p2
1p2),

p1 = 78x10 + 60u1x
8 + 14u2

1x
6 − 33u2x

5 +
2u3x

4 − 5u1u2x
3 − u4x

2 − u5x − u2
2,

p2 = 12x10 + 12u1x
8 + 4u2

1x
6 − 12u2x

5 +
u3x

4 − 4u1u2x
3 − 2u4x

2 + 4u5x + u2
2.

The curve forF4 on the other hand reads

PF4 = −8
(

z +
µ2

z

)3

+ s1(x)
(

z +
µ2

z

)2

+ s2(x)
(

z +
µ2

z

)
+ s3(x) = 0

where thesi(x) are given by

s1(x) = −636x9 − 300u1x
7 − 48u1

2x5 − 5u3x
3 + 2u4x,

s2(x) = −168x18 − 348u1x
16 − 276u1

2x14 + (−116u1
3 + 14u3)x12

+(−92u4 − 20u1
4 − 8u1u3)x10 + (−42u1u4 − 6u1

2u3)x8

+(−4u6 − 10
3

u1
2u4 − 2

3
u3

2)x6 + (
1
3
u3u4 − 2

3
u6u1)x4,

s3(x) = x27 + 6u1x
25 + 15u1

2x23 + (20u1
3 + u3)x21 +

(5u4 + 4u1u3 + 15u1
4)x19 + (6u1

2u3 + 12u1u4 + 6u1
5)x17 +

(
1
3
u3

2 + 5u6 + 4u1
3u3 +

26
3

u1
2u4 + u1

6)x15

+(
4
3
u1

3u4 +
19
3

u6u1 + u1
4u3 +

4
3
u3u4 +

2
3
u3

2u1)x13

+(
1
3
u1

2u3
2 − 1

3
u1

4u4 − 15
4

u4
2 + 3u6u1

2)x11

+(
1
3
u6u3 − 4

9
u1

2u3u4 +
1
27

u3
3 − 13

6
u4

2u1 +
13
27

u6u1
3)x9

+(−1
9
u3

2u4 − 1
2
u6u4 +

1
9
u6u1u3 − 7

36
u1

2u4
2)x7 +

(
1
12

u4
2u3 − 1

6
u6u1u4)x5 + (− 1

54
u4

3 − 1
108

u6
2)x3.
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Samenvatting

Er bestaat tot op heden geen algemene theorie voor het vinden van exacte oplossingen van
stelsels van partiële differentiaalvergelijkingen. Soms kan existentie en uniciteit van oplossin-
gen worden aangetoond via de stelling van Cauchy-Kovalevskaya, of kunnen oplossingen
expliciet worden geconstrueerd omdat ze tot een bepaalde klasse van vergelijkingen horen,
bijvoorbeeld de integreerbare vergelijkingen. In dit proefschrift bekijken we het Witten-
Dijkgraaf-Verlinde-Verlinde ofwel WDVV stelsel van partiële differentiaalvergelijkingen en
met name een generalisatie daarvan. Dit is een overbepaald stelsel van derde orde niet-
lineaire vergelijkingen. In het algemeen mag men niet verwachten dat een overbepaald stelsel
nog oplossingen toelaat, maar voor de (gegeneraliseerde) WDVV vergelijkingen is dit toch
het geval, wat de vergelijkingen reeds tot bijzondere maakt. De oplossingen die we zullen
bekijken en die het hoofdonderwerp van dit proefschrift vormen hebben hun natuurlijke con-
text binnen de zogenaamde Seiberg-Witten theorie, een fysisch model voor het beschrijven
van quarks en aanverwante elementaire deeltjes. Het feit dat we expliciete oplossingen kun-
nen construeren voor een ingewikkeld stelsel als WDVV maakt deze vergelijkingen tot heel
bijzondere.

De opbouw van dit proefschrift is als volgt. In hoofdstuk een worden de WDVV vergelijkin-
gen en hun generalisatie geı̈ntroduceerd. Er wordt uitgelegd hoe de vergelijkingen gezien
kunnen worden als de conditie om de derde orde afgeleiden van een functie op te vatten als
de structuurconstanten van een associatieve commutatieve algebra.

Hoofdstuk twee iśeén van de centrale hoofdstukken en bevat expliciete oplossingen van
zowel de gegeneraliseerde als de oorspronkelijke WDVV vergelijkingen. Deze oplossingen
hebben hun directe oorsprong in Seiberg-Witten theorie waar ze bekend staan onder de naam
perturbatieve prepotentiaal. Onderscheid wordt gemaakt tussen de vier-dimensionale prepo-
tentialen, die aanleiding geven tot oplossingen van de gegeneraliseerde vergelijkingen, en de
vijf-dimensionale prepotentialen die zelfs oplossingen geven van de oorspronkelijke WDVV
vergelijkingen. Met name de mogelijkheid om oplossingen te construeren voor elke simpele
Lie algebra is opmerkelijk en suggereert een dieper verband tussen de WDVV vergelijkingen
en Lie algebras, een verband dat nog niet goed is begrepen.

Hoofdstuk drie is het andere centrale hoofdstuk. Hierin worden de vier-dimensionale niet-
perturbatieve prepotentialen beschreven, die ook oplossingen zijn van de gegeneraliseerde
WDVV vergelijkingen. Hoewel deze oplossingen niet expliciet kunnen worden gegeven in
termen van gesloten uitdrukkingen zijn ze toch zeer interessant. Ten eerste worden ze in een
bepaalde limiet gereduceerd tot de perturbatieve prepotentialen en zijn dus daarmee direct
verbonden. Maar meer nog dan dat zijn de niet-perturbatieve prepotentialen interessant omdat
ze onderdeel zijn van een prachtig geometrisch kader dat de oplossing geeft van Seiberg-
Witten theorie. Omdat een uitgebreide beschrijving van de natuurkundige Seiberg-Witten
theorie teveel tijd zou vergen hebben we ervoor gekozen om deze te reduceren tot zijn puur
wiskundige inhoud. Om toch te kunnen waarderen hoe bijzonder de prepotentialen zijn is
besloten ze in te bedden in de context van een integreerbaar systeem: de periodieke Toda
ketting. Dit systeem is nauw verwant aan Seiberg-Witten theorie en de constructie van de
prepotentiaal geeft het antwoord op een zeer belangrijke vraag voor de Toda ketting, namelijk
hoe zijn Liouville torus te beschrijven is.
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